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ARTICLE INFO ABSTRACT

The propagation of solitary waves in a constant water depth is investigated. The Dirichlet boundary condition
and an internal mass source are utilized, respectively, to generate the desired solitary waves. Various solitary
wave theories are applied to the numerical model. The goal is to generate stable and accurate solitary waves.
Accuracy is evaluated in terms of the relative error of the wave height between the input signal and the gen-
erated wave and stability is evaluated in terms of the distance required to stabilize the waves. The attenuation of
solitary waves propagating over a significant travel distance due to the viscous effect is then studied experi-
mentally and numerically. The results reveal that the use of the first-order solitary wave solution with the
Dirichlet boundary condition is surprisingly good while the use of the ninth-order solitary wave solution with the
internal mass source provides the best performance. It is conjectured that in the numerical implementation, the
use of internal wavemaker acquires less theoretical information of solitary wave properties than that of the
Dirichlet boundary condition such that the former approach demands a higher-order solitary wave solution to
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generate accurate and stable waves.

1. Introduction

One of the key points in the modeling of wave-structure interactions
is the accurate generation of the desired waves. If the desired waves
cannot be generated correctly, the results cannot be modeled with
confidence. It is thus of great importance to verify the stability and
accuracy of generated waves prior to the formal testing of wave-
structure interaction. As a wave propagates into a shallow-water region,
an isolated solitary wave and cnoidal waves are frequently utilized to
model the nearshore processes of wave-structure interactions (e.g., Wu
and Hsiao, 2013, 2017; Wu et al., 2012, 2014b) and wave transfor-
mation (e.g., Chang and Lin, 2015; Hsiao et al., 2008; Lin et al., 2014;
Wu et al., 2015, 2018). Moreover, a solitary wave with only a crest (i.e.,
without trough) can be easily generated either in physical modeling or
in numerical simulation, providing an idealized investigation without
the effects of preceding or following waves.

Since the discovery by John Russell (1845) of solitary waves in
eighteenth century, which feature a stable waveform and negligible
wave damping over a significantly long travel distance, many theore-
tical studies have been devoted to the approximation of the wave
properties of solitary waves in terms of waveform, wave celerity and
particle velocities. Among existing theories of solitary waves, the
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Boussinseq theory of solitary waves (Boussinesq, 1871) has been most
commonly used even though the solution has first-order accuracy. Ex-
perimentally, Goring (1978) approximated the paddle movement of a
wavemaker based on the theory of Boussinesq (1871). A wave gen-
eration algorithm was applied to a numerical wave tank with a virtual
wave paddle by Huang and Dong (2001). Wu et al. (2014a) numerically
examined the method of Goring (1978) implemented with various so-
litary wave theories for wave generation using a mesh-free method to
solve the fully non-linear potential flow equations. This concept has
been successfully implemented for a two-dimensional (2D) wave flume
with a piston-type wavemaker (Wu et al., 2016). Due to the neglect of
the viscous effect, solitary waves do not experience any damping during
propagation, which is not realistic. It has long been noted that a solitary
wave would be damped as it propagates over a considerable distance
due to the viscous and frictional effects of the seafloor (Keulegan, 1948;
Mei, 1983). Motived by Wu et al. (2014a), Farhadi et al. (2016) in-
vestigated the accurate generation of solitary waves using various
paddle motions of a piston-type wavemaker implemented using an in-
compressible smoothed particle hydrodynamics (SPH) model. Further-
more, the model results of Wu et al. (2014a) and Farhadi et al. (2016)
are consistent in showing that the use of the ninth-order solution of
solitary waves provides the best performance.
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To generate water waves in a numerical wave tank, in addition to
using a virtual wave paddle, two other approaches can be used, namely
the Dirichlet boundary condition and the internal wavemaker. The
former is just to implement the appropriate theory of any surface
gravity wave in terms of free surface elevation and particle velocities
within the whole water column at the inflow boundary, and the latter
involves putting an internal source inside the computational domain,
with the source balanced by either mass or momentum conservations.

The present study focuses on how to generate stable and accurate
solitary waves using the Dirichlet boundary condition and an internal
mass source, respectively, with various existing theories of solitary
waves. Accuracy is measured in terms of the wave height variation
between the input signal to the model and the generated wave, which
should be as small as possible, and the stability is judged in terms of the
viscous damping of solitary waves between the numerical results and
the existing theories. It should be noted that the input wave height for
the model may not be completely equivalent to the generated wave
height, and that there may be some variation between them due to the
numerical instability or inaccuracy of theoretical results. Seiffert et al.
(2014) claimed that applying different solitary wave theories to the
wavemaker do not produce any significant differences, and that once a
wave completely enters the fluid domain, it is modified. Although we
agree with the latter viewpoint, the former statement has been chal-
lenged by Wu et al. (2014a) and thus further investigation is required.
There is no doubt that the wave properties will change when a wave
enters a nonlinear system either in a physical wave flume or in a nu-
merical wave tank based on the Navier-Stokes equations. However, the
issue of how and when a solitary wave will reach its stable state when
different solitary wave theories are used is still unsolved. It would be
valuable to provide guidelines for numerical modelers on how much
distance is required for a solitary wave to become stable for a given
wave height for a certain solitary wave theory. To better understand the
behavior of solitary wave damping over a significant travel distance,
experiments were performed to confirm the viscous damping of solitary
waves and compare the results with theoretical solutions. Particle
image velocimetry (PIV) was used to measure the particle velocities of
solitary waves. The velocity fields obtained from using PIV were used to
understand the wave properties of solitary waves propagating over a
long distance for the wavemaker movement prescribed by using the
first-order solution of solitary waves. Model-data comparisons are made
in terms of the free surface elevation and velocity time series.

The rest of this paper is organized as follows. After a brief de-
scription of the issue of concern, a summary of existing solitary wave
theories is given in Section 2. Basic information regarding the numer-
ical model is given in Section 3.1, including model equations, initial
and boundary conditions, and two approaches for generating the de-
sired solitary waves. Laboratory-scale measurements are described in
Section 3.2. Section 4 presents the relative error between the input
signal and the generated wave amplitude to verify the stability and
accuracy of the generated solitary waves. Measured data are utilized to
support the numerical calculations. Finally, conclusions are presented
in Section 5.

2. Overview of existing solitary wave theories

The simplest form of a solitary wave is the Boussinseq theory of
solitary waves (Boussinesq, 1871), in which the leading-order solitary
wave, propagating at a constant depth, h, can be expressed as:

n(x, t) = Hsech?[K (x — ct)], (@D)]

where 5(x, t) represents the free surface elevation, H is the wave height,
K = \/3H/4h? is the effective wave number and ¢ = ,/g(h + H) is the
wave celerity, with the x-coordinate pointing in the direction of wave
propagation and t representing time.

McCowan (1891) proposed a theoretical solution for the wave
properties of solitary waves, where the mathematical formulations can
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be found in Lee et al. (1982). We note that the wave properties of using
McCowan's solitary wave theory cannot be directly calculated because
it features an implicit formulation, and thus needs to be solved itera-
tively using a method such as the Newton-Raphson method. Grimshaw
(1971) proposed a solitary wave theory derived from a series expansion
up to the third-order accuracy based on the assumption that the fluid is
incompressible, irrotational, and inviscid, i.e., based on the Euler
equations. Fenton (1972) derived a solitary wave solution in the form of
a series expansion up to the ninth-order accuracy based on the Euler
equations. Some coefficients in the formulations were determined nu-
merically in order to make the ninth-order solution possible. Of note,
only the free surface displacement and wave celerity were provided by
Fenton (1972) but the particle velocities was not available. The solution
of a solitary wave by Fenton (1972) up to the third-order accuracy is
identical to that of Grimshaw (1971).

Some higher-order solutions of solitary waves have been reported,
which are, in principle, more precise than the ninth-order solution. For
example, Wu et al. (2005) derived a solution of solitary waves up to the
eighteenth-order accuracy; however, a large number of coefficients are
involved in the formulations. Some studies have provided exact solu-
tions of solitary waves based on the Euler equations, for example those
of Tanaka (1986) and Dutykh and Clamond (2014). To obtain these
solitary wave solutions, numerical algorithms were used to solve the
governing equations and then numerical iterations were required. Thus,
there is no general formulations for the waveform or particle velocity.

In the present study, direct comparisons in terms of free surface
displacements and particle velocities at the free surface in time histories
are performed among the theories of Boussinesq (1871), McCowan
(1891), Grimshaw (1971), Fenton (1972), Tanaka (1986), and Dutykh
and Clamond (2014). Two wave conditions are demonstrated, for the
cases of H/h = 0.20 and 0.40, in a constant water depth of h = 40 cm,
as shown in Figs. 1 and 2, respectively.

For the case with H/h = 0.20 and h = 40 cm, all solitary wave so-
lutions are mostly identical, except for the ones obtained from the
theories of Boussinesq (1871) and McCowan (1891). The free surface
time series of Boussinesq (1871) exhibits the narrowest outskirt of the
wave, and this may be partly due to the effective wave number, K, being
larger than those for the other theories. For the particle velocities at the
still water level, the solutions are typically unique for each solitary
wave theory. The numerically calculated exact solutions of Tanaka
(1986) and Dutykh and Clamond (2014) are the same. The maximum
horizontal velocity at the still water level obtained from the Boussinesq
(1871) is comparable to the exact solution of Tanaka (1986); that cal-
culated using the third-order solution of Grimshaw (1971) exhibits the
largest underestimation, followed by McCowan's theory. Although the
particle velocity of the ninth-order theory (Fenton, 1972) is unavail-
able, we compare the wave celerity for this theory with those obtained
from the numerical solutions of Tanaka (1986) and Dutykh and
Clamond (2014). It is found that these three solutions are the same up
to seven digits of accuracy.

Considering the case with H/h = 0.40 and h = 40 cm, apparent
variation is observed for the free surface time series. The free surface
displacements and wave celerity obtained from the two exact numerical
solutions and the ninth-order theory are identical. This result is con-
sistent with the study of Dutykh and Clamond (2014), who pointed out
that for H/h < 0.50, the ninth-order solution is comparable to the exact
numerical solution. The Boussinesq theory provides the narrowest
outskirt boundary near the still water level due to the relatively larger
effective wave number, while the McCowan's theory exhibits the nar-
rowest waveform near the crest. The solution of Grimshaw (1971) is
very close to the exact solutions as well as Fenton's solution. Once
again, the particle velocities at the still water level show significant
variations among the theories. The velocities obtained from the exact
solution exhibit the highest magnitude, followed by those obtained
using the Boussinesq theory and McCowan's solution. Grimshaw's
theory provides the lowest particle velocities.
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