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A B S T R A C T

This paper examines the free vibration of laminated composite plates in contact with a water-filled cavity. The
fluid compressibility is considered in the analysis. The main objective is to evaluate the natural frequencies of the
plate-fluid coupled system, compare the results with those obtained assuming an incompressible fluid domain,
and examine the influence of the laminate stacking sequence. Classical and refined plate theories are considered
in a compact manner. The Ritz method is used to obtain approximations of the kinetic and potential energy of
both the fluid and the plate. The accuracy of the formulation is demonstrated by comparing the results to 3D
finite element solutions obtained via commercial software. Parametric studies are carried out to examine the
influence of the geometry, lamination angles and boundary conditions on the natural frequencies and the error
incurred due to neglecting fluid compressibility. The error is higher when thick, stiff plates with rigid supports
are considered. The effect of the fluid domain depth on the natural frequencies depends on the symmetric or
antisymmetric nature of the mode shape. The orientation of the laminas becomes highly relevant when rec-
tangular plates with mixed supports are considered.

1. Introduction

The dynamic response of structures in contact with fluid can be very
different from the response in vacuum. This is because the fluid adds
inertia to the system, reducing the natural frequencies of the system. In
order to avoid resonance phenomena, an accurate analysis with hy-
drodynamic-structural coupling is required. Many approaches have
been used for this purpose, varying from analytical to semi-analytical
methods as well as the finite element method. While finite element
models can deal with arbitrary geometries, analytical methods are more
appropriate for performing parametric studies and obtaining insight in
the problem.

The vibration of structures coupled to a fluid domain has been
studied considering various geometries and physical assumptions. The
hydroelastic vibration of circular plates has been analyzed considering
an incompressible fluid domain (Jeong et al., 2009) and a compressible
fluid domain (Jeong and Kim, 2005), as well as asymmetric conditions
(Tariverdilo et al., 2013). A study of the vibration of annular plates
coupled to a compressible fluid domain has been presented by Jeong
(2006). The vibration of cylindrical (Askari and Jeong, 2010; Thinh and
Nguyen, 2016; Paak et al., 2014; Alijani and Amabili, 2014) and conical

(Rahmanian et al., 2016; Kerboua et al., 2010) structures in contact
with fluid has been studied considering shell kinematic assumptions.
Using various simplifications, it is possible to introduce viscosity in an
analytical hydroelastic model, as presented by Phan et al. (2013), At-
kinson et al. (Atkinson and Manrique de Lara, 2007) and Kozlovsky
(2009). A finite element approach using 2D plate elements has been
developed by Kerboua et al. (2008) and Bermudez et al. (2001). The
hydroelastic vibration of rectangular plates using the velocity potential
and classical plate theory was presented by Cheng and Zhou (Cheung
and Zhou, 2000). This approach has been extended in order to consider
plate stiffeners (Cho et al., 2015), fluid compressibility (Liao and Ma,
2016), plates in elastic foundations and with in-plane loads (Hashemi
et al., 2010a, 2010b; Shahbaztabar and Ranji, 2016), and geometric
non-linearity combined with sloshing effects (Khorshid and Farhadi,
2013). The frequency response of plates in contact with a fluid domain
and subjected to excitation forces has been presented by Cho et al.
(Seung Cho et al., 2015).

Most of the references about the hydroelastic vibration of plates
consider the Kirchhoff plate theory (also known as the classical plate
theory) or the Mindlin plate theory (also known as the first-order de-
formation theory) due to simplicity and low computational cost.

https://doi.org/10.1016/j.oceaneng.2018.06.069
Received 21 September 2017; Received in revised form 22 May 2018; Accepted 27 June 2018

∗ Corresponding author. Faculty of Mechanical Engineering, Universidad de Ingeniería y Tecnología (UTEC) Engineering and Technology, Jr. Medrano Silva 165,
Barranco, Lima, Peru.

E-mail address: jmantari@utec.edu.pe (J.L. Mantari).

Ocean Engineering 167 (2018) 267–281

0029-8018/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00298018
https://www.elsevier.com/locate/oceaneng
https://doi.org/10.1016/j.oceaneng.2018.06.069
https://doi.org/10.1016/j.oceaneng.2018.06.069
mailto:jmantari@utec.edu.pe
https://doi.org/10.1016/j.oceaneng.2018.06.069
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2018.06.069&domain=pdf


However, more accurate results can be obtained by using higher order
shear deformation theories (HSDTs), albeit at a higher computational
cost. The analysis of composite plates using an isogeometric analysis
and HSDTs is presented in Refs. (Thai et al., 2013, 2014, 2016). While
many different HSDTs can be proposed and developed, a compact for-
mulation is preferable, allowing the user to obtain a theory of arbitrary
order according to the accuracy desired. The Carrera Unified For-
mulation (CUF) is a formulation that condenses classical and refined
plate theories in a compact manner using index notation. This for-
mulation is capable of reaching an accuracy similar to that obtained via
3D analysis, while retaining the computational efficiency of 1D and 2D
models. The formulation was presented by Carrera (2003), and has
been applied for thermal stress analysis of plates (Carrera, 2002, 2005;
Robaldo et al., 2005), multifield problems (Carrera et al., 2007, 2008a,
2009; Robaldo et al., 2006), analysis of structures with functionally
graded materials (Carrera et al., 2008b), and shell geometries (Cinefra
et al., 2012, 2013). The displacements are interpolated in the thickness
direction with either simple polynomials or more complex functions, as
presented in Refs. (Carrera et al., 2013; Filippi et al., 2016). The for-
mulation is presented in detail in Refs. (Carrera et al., 2011a, 2011b,
2014).

In order to obtain approximations of the displacement variables, the
Ritz method is popular due to the capability of considering arbitrary
boundary conditions, while having lower computational cost than a 2D
finite element model. The fundamentals of the Ritz method is described
in detail in Refs. (Leissa, 2005; Gander and Wanner, 2012; Ilanko et al.,
2014). The accuracy of this method is highly dependent on the choice of
shape functions used. The dry modes of the structure are a common
choice for the mode shapes, although the addition of the fluid may
change considerable the mode shapes (Kwon et al., 2013) and conse-
quently compromise the convergence characteristics of the method.
Within the framework of CUF, trigonometric shape functions have been
used by Fazzolari and Carrera, 2011, 2013a, 2013b, 2014 for the ana-
lysis of simply supported plates. Shell geometries have also been con-
sidered in Refs. (Fazzolari, 2016; Fazzolari and Banerjee, 2014;
Fazzolari and Carrera, 2013c). Plates with arbitrary boundary

conditions can be analyzed using polynomial shape functions, as pre-
sented by Dozio, 2010, 2011a, 2011b, 2013, Vescovini and Dozio
(2016), and in the work by Dozio and Carrera (2011).

While the compressibility of liquids is often neglected, the error
incurred due to this assumption may not be justified in all the cases.
Some examples where the error between incompressible and com-
pressible fluid theory is considerable in the vibration of isotropic plates
in contact with a fluid domain have been presented in Refs (Jeong and
Kim, 2005). and (Liao and Ma, 2016). However, a study of laminated
plates coupled to a compressible fluid domain is currently not available
in the literature, nor is there assessment of the error due to fluid in-
compressibility assumptions. Recently, the authors have used the
compact formulation known as CUF to perform an accurate hydro-
elastic vibrational analysis of laminated plates considering in-
compressible fluid theory (Canales and Mantari, 2017). In the present
work, the model developed previously is extended in order to consider
fluid compressibility,

The novelties of the present work are as follows:

• The natural frequencies of a laminated composite plate coupled to a
compressible fluid domain are presented for a variety of arrange-
ments.

• The error due to the fluid incompressibility assumption in the vi-
bration of laminated plates coupled to a fluid domain is assessed,
considering various stacking sequences.

The accuracy of the formulation when compared with 3D solutions
is demonstrated in the comparison study. Afterwards, parametric stu-
dies are done in order to evaluate the influence of various geometric
and material parameters.

2. Analytical modeling

2.1. Preliminaries

A rectangular plate with length a, width b and thickness h is

Nomenclature

a,b Plate length and width
c,d Length and width of fluid domain
c0 Speed of sound in the fluid
Cij Constitutive matrix coefficients
D Flexural rigidity of the plate
Dp,Dnp,Dnz Linear differential operators
e Depth of fluid domain
E Young's moduli
F Fluid mass matrix
Fτsij Fluid mass nucleus
Fτ Plate thickness expansion function
h Plate thickness
K Stiffness matrix
Kτsij Stiffness nucleus
j Imaginary unit
J Jacobian matrix
k Wavenumber
M Ritz expansion order
M Solid mass matrix
Mτsij Solid mass nucleus
N CUF Expansion order
p,q Indexes of trigonometric terms in x and y directions
P Polynomial degree of Ritz expansion
QW Total fluid energy
t Time

T Kinetic energy of plate
TW Kinetic energy of fluid
u,v,w Plate displacements in x ,y,z coordinates
u Plate displacement vector
u Plate amplitude displacement vector
U Potential energy of plate
UW Potential energy of the fluid
W Amplitude of plate deflection in z coordinate
x ,y,z Coordinates of plate
x͠ , y͠ ,z͠ Coordinates of fluid domain
X Y Z, , Assumed solutions of the velocity potential in x͠ , y͠ ,z͠ axes
εn,εp Vector of in-plane and out-of-plane strain components
φ Velocity potential
Φ Amplitude of the velocity potential
ΓP,ΓW Plate and fluid area in the bottom
ν Poisson's ratio
ρ ρ, W Density of structure and fluid
σn,σp Vector of in-plane and out-of-plane stress components
ω Frequency of vibration
Ω Fluid domain
ξ η, Non-dimensional x and y coordinates of plate
ξ͠ ,η͠ ,ζ͠ Non-dimensional x͠ , y͠ ,z͠ coordinates of fluid domain
ψu,ψv,ψw Ritz shape functions of the plate displacements u,v,w
Ψ Ritz shape functions matrix
∇ Del operator
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