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A B S T R A C T

This paper aims to employ the differential transformation method for solving a fluid-structure interaction prob-
lem. The free vibration of an Euler-Bernoulli beam next to an incompressible, irrotational and inviscid fluid is
administrated by a coupled boundary value problem. In the present study, the governing differential equations are
solved by the mentioned semi-analytical approach. To evaluate the correctness and robustness of the developed
formulations, the free vibration of several beam-fluid systems, with different boundary conditions, are assessed.
Moreover, the obtained results are compared with those of the finite element technique.

1. Introduction

In offshore structures, dam-reservoir systems, aircraft wings and long-
span bridges in contact with fluid, the beam like-structures interacting
with fluid can be observed. Note that; a coupled boundary value problem
governs the vibrational behavior of the flexible beam-fluid systems.
Obviously, investigating the dynamic behavior of these systems is
essential for reliable design and life prediction. Various researchers have
dealt with the dynamic behavior of these systems. In what follows, the
corresponding state of the art are briefly reviewed.

In 1970, Jones experimentally and analytically assessed the vibration
of beams immersed in a fluid and carrying concentrated mass and rotary
inertia (Jones, 1970). Afterwards, Taleb and Misra analyzed axially
moving slender beam immersed in an incompressible fluid (Taleb and
Misra, 1980). In this work, the transverse displacement of the beam was
written in terms of time-dependent admissible functions. Subsequently,
the set of non-autonomous ordinary differential governing equations
were derived. Moreover, Nagaya suggested a method for solving prob-
lems of transient response in flexure of beams with concentrated tip in-
ertias (Nagaya, 1985). In this study, the beam was immersed in a fluid,
and it had a variable cross-section. Then, Chang and Liu dealt with the
natural frequencies of the immersed restrained columns (Chang and Liu,
1989).

In 1997, by using the separation of variables' approach, the natural
vibration of a flexible beam-water system was analytically assessed by
Xing et al. (1997). These researchers assumed that the coupled systems
were subjected to an undisturbed boundary condition at infinity of the
water domain and a linear surface disturbance condition on the free
surface. Sader (1998) presented the frequency response of a cantilever

beam immersed in a viscous fluid and excited by arbitrary thermal
driving force (Sader, 1998). In another research, the theoretical model of
Ref (Sader, 1998) was experimentally validated by Chon et al. (2000).

Zhao et al. took advantage of the separation of variables' scheme for
computing the natural frequencies of a flexible beam-water coupled
system with a concentrated mass attached at its free end (Zhao et al.,
2002). Besides, Green and Sader dealt with the torsional frequency
response of cantilever beams immersed in viscous fluids (Green and
Sader, 2002). By taking into account the added mass concept, a
closed-form solution for computing the natural frequencies of the
immersed beams was proposed by Wu and Chen (2003). These re-
searchers compared the results obtained from their strategy with those of
the finite element tactic. In 2006, Wu and Hsu presented a unified al-
gorithm to approximate the several lowest natural frequencies and the
corresponding mode shapes of an elastically supported immersed uni-
form beam carrying an eccentric tip mass with rotary inertia (Wu and
Hsu, 2006). In this method, the distributed added mass along the
immersed part of the beam was modeled with a number of concentrated
added mass. For verification, these researchers compared the results of
their scheme with those of the finite element approach.

Among this kind of the research,Gorman et al. analytically computed
the natural frequencies of the cantilever beam in contact with a fluid
cavity (Gorman et al., 2007). At the next stage, by using the obtained
values, they estimated the natural frequencies of the system in the
absence of the fluid interaction. In two-dimensional plane, Basak and
Raman (2007) analyzed the long and slender, micromechanical beam
oscillating in an incompressible viscous fluid by utilizing the boundary
integral technique (Basak and Raman, 2007). With the help of separation
of variables, Xing investigated the dynamic behavior of planar flexible
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slender structure-water interaction systems (Xing, 2007). In this work,
the Sommerfeld radiation condition was applied at the infinity of the
water domain. By employing the Runge-Kutta algorithm, Gosselin et al.
solved the equations of motions of a flexible slender cantilever beam
extending axially in a horizontal plane at a known rate while it was
immersed in an incompressible fluid (Gosselin et al., 2007).

In another event, Jin and Xing took advantage of a mixed mode
function-boundary element method to solve the transient dynamics of a
floating beam-water interaction system excited by the impact of a landing
beam (Jin and Xing, 2007). Moreover, Weiss et al. calculated the hy-
drodynamic resistance functions, which described the relationship be-
tween the resistance coefficients, the fluid's density and the vibration
characteristics of an immersed beam (Weiss et al., 2008). For this pur-
pose, a semi-numerical method was suggested for solving the associated
fluid-structure interaction problem. By employing the differential quad-
rature approach, Lin and Qiao computed the natural frequencies of an
axially moving beam in fluid (Lin and Qiao, 2008). Besides, Rezazadeh
et al. investigated the flexural vibrations of an electrostatically actuated
cantilever micro-beam in an incompressible inviscid stationary fluid,
based on the three-dimensional aerodynamic theory (Rezazadeh et al.,
2009).

In 2011, Miquel and Bouaanani proposed a practical procedure for
dynamic analysis of beams laterally vibrating in contact with water on
one or both sides (Miquel and Bouaanani, 2011). In this technique,
structure flexibility, soil flexibility, varying water levels and various
boundary condition were taken into account. Keyvani et al. developed a
closed-form formulation for dynamic analysis of a shear
beam-compressible fluid system (Keyvani et al., 2013). Furthermore,
they compared the obtained results with those of the finite element
scheme. Based on Fourier-Bessel series expansions and linear potential
theory, Shabani et al. developed an analytical tactic for finding the so-
lution of the eigenvalue problem for a cantilever micro-beam submerged
in a bounded incompressible fluid domain (Shabani et al., 2013). In
another study, Sharafkhani et al. studied the transient response of
electrostatically excited micro-beam interacting with bounded
compressible fluid by applying Fourier-Bessel series expansions (Shar-
afkhani et al., 2013).

In 2014, Eftekhari and Jafari suggested a simple mixed modal-
differential quadrature strategy for vibration of beams in contact with
fluid (Eftekhari and Jafari, 2014). These researchers studied both the free
and forced vibration of this system. With the help ofGalerkin scheme,Ni
et al. evaluated the free vibration and stability of the cantilever beam
attached to an axially moving base in fluid (Ni et al., 2014). Moreover,
Jafari-Talookolaei and Lasemi-Imani presented the free vibration

characteristics of a laminated composite beam partially contacting with a
fluid by developing an analytical method (Jafari-Talookolaei and
Lasemi-Imani, 2015). Besides, Bouaanani and Miquel proposed a
simplified procedure for finding the modal dynamic and earthquake
response of the coupled flexible beam-fluid systems (Bouaanani and
Miquel, 2015). In this study, it was assumed that the beam had lateral
interaction with one or two semi-infinite fluid domain.

It is worthwhile to highlight that an effective scheme for finding the
solution of linear, and nonlinear boundary, initial and eigenvalue prob-
lems is the differential transformation method (DTM). This semi-
analytical technique is based on Taylor series expansion (Abdel-Halim
Hassan, 2008; Chen and Ho, 1996; Jang et al., 2000). Up to now, many
researchers took advantage of DTM for solving the various eigenvalue
problems. Malik and Dang employed the differential transformation
algorithm for calculating the eigen-pairs of thin beams (Malik and Huy
Dang, 1998). Afterwards, Chen andHo solved the transverse vibration of
rotating Timoshenko beams under axial loading by DTM (Chen and Ho,
1999). In 2000, Hasan used DTM for eigenvalues and normalized
eigen-functions for a Sturm–Liouville eigenvalue problem (Abdel-Halim
Hassan, 2002). Then, Zeng and Bert used the differential transformation
approach for vibration analysis of a tapered bar (Zeng and Bert, 2001). In
another study, these researchers deployed this semi-analytical method to
find the solution of the compound bars (Bert and Zeng, 2004). Further-
more, Yeh et al. compared the ability of the finite difference tactic and
DTM in analyzing the free vibration of plates (Yeh et al., 2006).
Furthermore, Catal applied the differential transformation scheme in
solving the free vibration equations of the beam on elastic soil (Çatal,
2008). In 2009, Chen et al. took advantage of DTM for extracting the
natural frequencies and mode shapes of marine risers (Chen et al., 2009).
Additionally, DTM was utilized for analyzing the out-of-plane free vi-
bration of rotating the tapered beams in the post-elastic regime by Das
et al. (2009). Besides, Yalcin et al. (2009) dealt with the free vibration
analysis of circular plates, based on DTM (Yalcin et al., 2009). Analo-
gously, Lal and Ahlawat (2015) analyzed the free vibration of a func-
tionally graded circular plate (Lal and Ahlawat, 2015).

To authors' best knowledge, DTM has not been previously employed
in free vibration analysis of the beam-fluid system, although it has been
applied in different eigenvalue problems. Consequently, this paper aims
to find the free vibration solution of a beam vibrating in contact with a
finite fluid domain by taking advantage of the differential transformation
approach. In this process, various boundary conditions are considered for
the beam. Besides these activities, proper comparison studies will be
performed, and the related discussions will be given throughout the
article.

Notation

A Cross-sectional area of the beam
B Interaction matrix
Be Elemental interaction matrix
D Nodal displacement vector
EI Flexural rigidity of the beam

1F2 Hypergeometric function
F½k�; U½k�; Z½k� The differential transformation function
H Beam length
H Generalized fluid stiffness matrix
He Generalized elemental fluid stiffness matrix
K Stiffness matrix of the structure
Ke Elemental stiffness matrix of the structure
L Length of the fluid domain
Le Element length
M Mass matrix of the structure
Ma Added mass matrix

Me Elemental mass matrix of the structure
M; N Number of series terms
P Nodal pressure vector
P; P* Pressure function

bjk, cj, dj, e
j
k, g

j
k Parameter defined in section 4

f ðxÞ An arbitrary function
j; k; q Series numerator
x; y Cartesian coordinates
u Beam deflection function
zjðξÞ Function defined in Eq. (13)
Λj Parameter defined in Eq. (16)
η; ξ Dimensionless coordinates
λj Parameter defined in Eq. (14)
ρ Beam density
ρf Fluid density
ω Natural frequency of the system
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