Accepted Manuscript

Off-design thermodynamic performances of a solar tower aided coal-fired power plant for different solar multiples with thermal energy storage

Chao Li, Zhiping Yang, Rongrong Zhai, Yongping Yang, Kumar Patchigolla, John E. Oakey

PII:	S0360-5442(18)31722-5
DOI:	10.1016/j.energy.2018.08.186
Reference:	EGY 13662
To appear in:	Energy
Received Date:	28 April 2018
Accepted Date:	24 August 2018

Please cite this article as: Chao Li, Zhiping Yang, Rongrong Zhai, Yongping Yang, Kumar Patchigolla, John E. Oakey, Off-design thermodynamic performances of a solar tower aided coal-fired power plant for different solar multiples with thermal energy storage, *Energy* (2018), doi: 10.1016/j.energy.2018.08.186

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Off-design thermodynamic performances of a solar tower aided coal-fired power
2	plant for different solar multiples with thermal energy storage
3	Chao Li ^{a,b} , Zhiping Yang ^a , Rongrong Zhai ^{a,*} , Yongping Yang ^a , Kumar Patchigolla ^{b,*} , John E.
4	Oakey ^b
5	^a School of Energy, Power and Mechanical Engineering, North China Electric Power University,
6	Beijing 102206, China
7	^b School of Water, Energy and Environment, Cranfield University, Bedford, Bedfordshire MK43
8	0AL, UK
9	*Corresponding authors: Rongrong Zhai, Kumar Patchigolla
10	E-mail:zhairongrong01@163.com, k.patchigolla@cranfield.ac.uk
11	Tel.:+86-10-61772284; +44-1234-754124; Fax: +86-10-61772284
12	Abstract: Solar aided coal-fired power system has been proven to be a promising way to utilise
13	solar energy in large scale. In this paper, the performances of the solar tower aided coal-fired power
14	(STACP) system at 100% load, 75% load, and 50% load for different days are investigated and the
15	maximum solar power that the boiler can absorb under different plant loads are explored. Then, the
16	effects of solar multiple (SM) and the thermal energy storage (TES) hour on the daily performance
17	of STACP system are investigated. Results show that the maximum solar power that a 600 MW_e
18	boiler can absorb at 100% load, 75% load and 50% load are 76.4 $\rm MW_{th},$ 54.2 $\rm MW_{th}$ and 23.0 $\rm MW_{th},$
19	respectively. Due to the augmented energy from the solar field, the maximum standard coal
20	consumption rate is reduced by 13.53 g/kWh, 12.81 g/kWh and 8.22 g/kWh at 100% load, 75% load
21	and 50% load, respectively. With an increase of solar power input, the boiler efficiency, overall
22	system efficiency and solar thermal-to-electricity efficiency shown a downward trend. In addition,

Download English Version:

https://daneshyari.com/en/article/10136281

Download Persian Version:

https://daneshyari.com/article/10136281

Daneshyari.com