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We explain in detail the quantum-to-classical transition for the cosmological perturbations using only the 
standard rules of quantum mechanics: the Schrödinger equation and Born’s rule applied to a subsystem. 
We show that the conditioned, i.e. intrinsic, pure state of the perturbations, is driven by the interactions 
with a generic environment, to become increasingly localized in field space as a mode exists the 
horizon during inflation. With a favourable coupling to the environment, the conditioned state of the 
perturbations becomes highly localized in field space due to the expansion of spacetime by a factor 
of roughly exp(−c�N), where �N ∼ 50 and c is a model dependent number of order 1. Effectively 
the state rapidly becomes specified completely by a point in phase space and an effective, classical, 
stochastic process emerges described by a classical Langevin equation. The statistics of the stochastic 
process is described by the solution of the master equation that describes the perturbations coupled to 
the environment.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is breathtaking that quantum fluctuations [1–6] in the in-
flating universe [7–12] became the seeds of the structure in the 
universe and were imprinted as small fluctuations of the CMB. 
However, there seems to be a missing chapter in the standard 
story, namely, how the quantum fluctuations actually became clas-
sical. If one is only interested in probability distributions then the 
issue can be discussed only in terms of the degree of decoherence 
and so it sits there as the elephant in the room.

The goal here is to go beyond a description of a quantum pro-
cess in terms of probabilities to one that can describe the tra-
jectory of a single system. The classic “Wigner’s Friend” thought 
experiment illustrates the issues involved in a very simple setting, 
but one that is not meant to be at all realistic.1 The friend mea-
sures a qubit initially in the state c+|+〉 + c−|−〉 and according to 
the external observer, Wigner, the total state of the system is the 
entangled state c+|+〉|F+〉 + c−|−〉|F−〉. More specifically, Wigner 
associates the reduced state ρ = |c+|2|F+〉〈F+| + |c−|2|F−〉〈F−| to 
the friend. On the contrary, for the friend, Born’s rule implies that 

E-mail address: t.hollowood@swansea.ac.uk.
1 True macroscopic systems cannot be described by simple states like |F±〉 be-

cause of entanglement with the environment that is being ignored here. In the 
simple toy model, it is the qubit that effectively decoheres the friend.

their state is either |ψ〉 = |F±〉 with probability |c±|2, respectively.2

So the state of the system depends on the frame of reference. The 
external observer, Wigner, describes the friend with the uncon-
ditioned state ρ whereas in the friend’s frame their state |ψ〉 is 
conditioned:

W (unconditioned state):

ρ = |c+|2|F+〉〈F+| + |c−|2|F−〉〈F−| ,

F (conditioned state): |ψ〉 =
⎧⎨
⎩

|F+〉 prob = |c+|2 ,

|F−〉 prob = |c−|2 .

(1.1)

The two states are related via a stochastic average

ρ = E (|ψ〉〈ψ |) . (1.2)

The key distinction between the two states is that the uncondi-
tioned state ρ exhibits entanglement – it is a mixed state – while 
the conditioned state |ψ〉 is pure but random. So there is a duality 
of perspective between entanglement and randomness: ρ ←→ |ψ〉, 
which gives rise to a form of observer complementarity.3

2 The states |F±〉 are the states in the generically unique decomposition of ρ into 
an orthogonal ensemble or, equivalently, the eigenvectors of ρ .

3 By recognizing that the state depends on the frame of reference (or perspec-
tive, or context) one realizes a unification of many worlds and Copenhagen quantum 
mechanics.
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In the context of the cosmological perturbations, the uncon-
ditioned state ρ is the one that is analysed in concrete models 
involving their interaction with some environment, consisting ei-
ther of other fields or self interactions of the perturbations. After 
various approximations, the state ρ satisfies a master equation that 
describes how the perturbations are decohered by the environ-
ment. This points to the fact that a classical description should be 
valid and probability densities can then be extracted from ρ . How-
ever, if one wants to describe how a single perturbation becomes 
classical, we need a description of the trajectory of the individual 
mode, in other words the state from the frame of the reference 
of the mode itself. This is the conditioned state constructed via 
the Born rule to satisfy (1.2). The formalism then decides whether 
the quantum-to-classical transition happens: does the state |ψ〉 be-
comes localized in phase space? The goal of this paper is to show 
that the conditioned state of the perturbations does become classi-
cal driven by interaction with the environment and the inflationary 
expansion.

It is well known that there are an infinite number of ways to 
write the solution of a master equation ρ as a stochastic average 
as in (1.2), each known as an unravelling.4 However, there is a par-
ticular unravelling that follows from implementing the Born rule 
to a subsystem, the perturbations in the present context. This is 
the Born unravelling defined in [17] and first described by Diósi 
[18,19].5 This has a phenomenology that is similar to another un-
ravelling, known as quantum state diffusion [27–29] which has been 
widely studied as a description of the quantum-to-classical tran-
sition in [30–38]. In both unravellings, the quantum-to-classical 
transition happens dynamically when the conditioned state be-
comes sufficiently localized that Ehrenfest’s theorem applies and 
an effective description in terms of a position in phase space ap-
plies. In [17] it was argued that the quantum-to-classical transition 
becomes a dynamical process that involves the following concep-
tual steps:

• The unconditioned state ρ of the subsystem of interest sat-
isfies a master equation, within the Born–Markov approxima-
tion.

• The conditioned state |ψ〉 (the state from the frame of ref-
erence of the subsystem) satisfies a particular unravelling of 
this master equation which takes the form of deterministic 
evolution with a non-linear, non-Hermitian, Hamiltonian, in-
terspersed with stochastic jumps into orthogonal states (aris-
ing from applying the Born rule to each coherent interaction 
of the system with the environment).

4 The terminology comes from the theory of quantum trajectories that describes 
the behaviour of a subsystem conditioned on the measurements made on it [13–16].

5 See also [20–23]. As shown in [20], the Born unravelling also defines a set of 
consistent histories in the formalism of [24–26].

• Under favourable conditions, the dynamics of the conditioned 
state drive it to become localized on macroscopic scales and 
Ehrenfest’s Theorem can be invoked.

• The localized state can be described by point in phase space 
(i.e. a classical state) evolving according to the classical equa-
tions of motion plus stochastic noise, i.e. a Langevin equation.

• Finally, to bring things full circle, the Langevin equation has an 
associated Fokker–Planck equation whose solution is identified 
with the Wigner function of the unconditioned state in the 
semi-classical limit.

The purpose of this work is to apply this formalism to the cos-
mological perturbations by considering their evolution according to 
the Born unravelling. We will argue that, with a suitable coupling 
to the environment, although the unconditioned state spreads out 
in field space when a mode exits the horizon during inflation, the 
conditioned state is driven to become increasingly localized in field 
space as a result of the expansion (just as described above). In the 
end the usual state analysed in the literature—the unconditioned 
state—becomes a probability density for the conditioned state that 
is effectively specified by a point in field space. We can follow the 
stochastic evolution of this state and find that it follows a random 
walk in field space once the mode under discussion has crossed 
the horizon. The CMB across the sky can be viewed as an ensem-
ble of endpoints of the classical stochastic process.

The scalar curvature perturbations ζ are effectively described 
by a scalar field ν = √

2εaζ , the Mukhanov–Sasaki variable, each 
Fourier mode of which is effectively a parametric oscillator whose 
Schrödinger equation looks like that of non-relativistic quantum 
mechanics6:

−∂2ψ

∂ν2
+ ω2ν2ψ = 2i

∂ψ

∂τ
. (1.3)

Here, ν is identified with either of the real combinations (νk +
ν−k)/

√
2 or i(νk − ν−k)/

√
2, of wave vector k, and τ is the con-

formal time during inflation. The latter has negative values and 
approaches τend at the end of inflation. A mode exits the horizon 
when k|τ | ∼ 1 and the modes of interest for the CMB and structure 
formation underwent �N ∼ 50 e-folds before the end of inflation, 
so k|τend| ∼ e−�N for the modes of interest. Above, a(τ ) is the 
scale factor.

The power spectrum of the scalar curvature perturbations is 
simply related to the variance of the quantum mechanical prob-
lem,7

�2
ζ = k3

2π2
〈ζ ζ 〉 = k3

4π2εa2
〈ν2〉 . (1.4)

In the above,

ω(τ)2 = k2 − (a
√

2ε)′′

a
√

2ε
, (1.5)

where ε is a slow roll parameter. For present purposes, we will 
ignore slow roll effects and assume an exact de Sitter geometry 
during inflation for which a = −1/(Hτ ), for constant H , so ω2 =
k2 − 2/τ 2 and �2

ζ = k3 H2τ 2〈ν2〉/4π2ε.
The initial conditions of the mode are that at early times, 

k|τ | 	 1, the mode sits in the ground state of the oscillator with 
ω = k, the Bunch–Davies vacuum,

6 We present the Schrödinger equation in a form that looks like a harmonic os-
cillator. The Hamiltonian is related to the Hamiltonian of the perturbations by a 
canonical transformation that just shifts the momentum π → π − (a′/a)ν. So before 
shifting, we have (classically) π = ν′ while after shifting π = ν′ −(a′/a)ν = (

√
2εa)ζ ′ .

7 In these formulae, we are ignoring the delta functions of the wave vector.
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