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Pair densities and associated correlation functions provide a critical tool for introducing many-body 
correlations into a wide-range of effective theories. Ab initio calculations show that two-nucleon pair-
densities exhibit strong spin and isospin dependence. However, such calculations are not available for 
all nuclei of current interest. We therefore provide a simple model, which involves combining the short 
and long separation distance behavior using a single blending function, to accurately describe the two-
nucleon correlations inherent in existing ab initio calculations. We show that the salient features of the 
correlation function arise from the features of the two-body short-range nuclear interaction, and that the 
suppression of the pp and nn pair-densities caused by the Pauli principle is important. Our procedure for 
obtaining pair-density functions and correlation functions can be applied to heavy nuclei which lack ab 
initio calculations.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Correlation functions are a valuable tool for describing inter-
acting many-body systems, providing a means of encapsulating 
complex many-body dynamics. In the absence of correlations, a 
many-body probability density, such as that from a many-body 
quantum mechanical wave-function, can be written as an anti-
symmetrized product of single-particle probability densities. The 
correlation function describes important deviations from this pic-
ture. Our aim here is to explain the basic physics inputs that 
determine the nuclear pair-density functions and the correlation 
functions derived from them. This is done by blending the short-
distance behavior, as determined by the contact formalism [1–3], 
with the known long distance behavior. The input needed to use 
the contact formalism is accessible from experimental data, as 
shown in Ref. [2].

Correlation functions are widely used in nuclear physics. For re-
cent reviews see Refs. [4,5]. The nucleus is a strongly-interacting, 
quantum mechanical, many-body system with high density and a 
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complicated interaction between constituent nucleons. There is no 
fundamental central potential, so correlations must exist. An early 
paper that modeled nuclear correlation functions [6] was used in 
a wide variety calculations (see the early review [7]) involving the 
strong and weak interactions, demonstrating the impact of cor-
relation functions on the field. More recent examples in which 
correlation functions are crucial ingredients include: calculations 
of neutrinoless double beta decay [8–13], nuclear transparency in 
quasielastic scattering [14–19], shadowing in deep inelastic scat-
tering [20], and parity violation in nuclei [21,22].

Despite the wide use of correlation functions, their spin and 
isospin dependence has received less attention. The nucleon–
nucleon interaction is both spin and isospin dependent, and these 
dependencies become very important at short-range, leading to 
phenomena such as the strong preference for proton–neutron 
short-range correlated pairs [23–29].

The calculations in this paper use the formalism of nuclear con-
tacts [2,3] to determine the spin and isospin decomposition of the 
two-body density that determines the correlation function. This 
formalism is based on the separation of scales inherent in the 
long- and short-range structure of nuclei [2,3]. At short distances, 
the aggregate effect of long-range interactions can be encapsu-
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Fig. 1. In the two-body density from contact formalism [2,3], the np two-body 
density is dominated by spin-1 pairs. 40Ca, shown here, illustrates this universal 
behavior. For r ≤ 0.9 fm, these results reproduce those of Cluster Variational Monte 
Carlo (CVMC) [34] calculations. The pp/nn spin-0 density (peak value 0.5) is en-
hanced by a factor of 2 to provide some separation from np spin-0. The pn density 
peaks at 0.2 for spin 0, and 0.8 for spin 1 . (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

lated into coefficients, called “contacts,” which are nucleus-specific, 
while the underlying short-range behavior is a universal property 
of the two-body nuclear interaction. In the contact formalism, the 
two-body density, ρN N,s(r), defining the probability for finding a 
nucleon–nucleon pair with separation distance r, can be modeled 
at short distance (r � 1 fm) by:

ρcontact
N N,s (r) = C N N,s

A × |ϕN N,s(r)|2 (1)

for nucleus, A, where C A is the contact coefficient, N N stands 
for proton–proton (pp), proton–neutron (pn), or neutron–neutron 
(nn) pairs and the index s denotes the spin 0, 1 of the two-
nucleon systems. The wave functions ϕN N,s(r) are zero-energy 
(S- or S-D wave) solutions to the Schrödinger equation with a 
modern nucleon–nucleon potential, e.g., AV18 [30]. Equation (1)
assumes angle averaging, and the zero-energy nature restricts the 
number of contacts. The key assumption in this formalism is that 
these functions, ϕN N,s(r) can be used for all nuclei. Contact coeffi-
cients can be determined for the different possible spin and isospin 
configurations of a nucleon–nucleon pair from experiment or from 
fitting ab initio calculations. Previous studies [2], show that the N N
state with deuteron quantum numbers is dominant: the peak value 
of the product Cnp,s=1

A |ϕnp,s=1(r)|2 is four times larger than for 
any other combination. This dominance is caused by the tensor 
force [31–33] As an example, the decomposition of the two-body 
density from contact formalism for 40Ca is shown in Fig. 1.

2. Describing the pair (two-body) density

The two-body pair density distribution ρN N,s(�r), is defined as 
the probability density for finding a nucleon–nucleon pair sepa-
rated by �r, with relative spin s, normalized so that its integral is 
the number of possible N N, s pairs. The two-body density is ex-
pressed as a matrix element of the nuclear wave function |ψ〉 by

ρN N,s(�r) ≡
∑

i, j∈N N
i< j

〈ψ |δ(�r −�ri j)P s|ψ〉, (2)

where �ri j is the separation between nucleons i and j and P s is a 
projection operator onto the spin s of the nucleon pair.

Our aim here is to provide a simple understanding of the un-
derlying mechanisms that produce the isospin dependence and 

other features. We will compare our results for ρN N (r) to ab ini-
tio calculations performed using Cluster Variational Monte Carlo 
(CVMC) [34] of 16O and 40Ca, the two heaviest nuclei studied so 
far using CVMC [35]. Several other calculations that include the 
necessary spin and isospin dependence in computing densities are 
those of Refs. [31,34,36–39]. A nice ab initio treatment of light nu-
clei has recently appeared [40]. See also Ref. [41], which is based 
on nuclear matter calculations.

To achieve the desired understanding we design a model in 
which the two-body density is formed from a combination of the 
correlated density coming from nuclear contact formalism (Fig. 1), 
which accounts for the behavior for r ≤ 0.9 fm and a longer-ranged 
term, ρ(0)

N N(r), for which correlations are expected to be unimpor-

tant. We define this term as ρ(0)
N N (r), given by

ρ
(0)
N N(�r) ≡ SN N

∫
d3 �RρN(�R +�r/2)ρN(�R −�r/2), (3)

where ρN is the one-body density, normalized to proton or 
neutron number, �R represents the center-of-mass position of a 
nucleon–nucleon pair, and SN N represents a symmetry factor, 
which equals 1 for pn pairs, equals Z(Z − 1)/2Z 2 for pp pairs – 
since there are only Z(Z −1)/2 unique pp pairs in a nucleus – and 
equals N(N − 1)/2N2 for nn pairs.

Then the full two-body density combines the short and long 
distance behavior, with the relative weighting determined by a 
blending function, gN N (r), and constant, κ , such that

ρN N(r) = gN N(r)ρcontact
N N (r) + κ(1 − gN N(r))ρ(0)

N N(r). (4)

We can understand how the correlated and uncorrelated densities 
contribute to produce the specific behavior of the correlation func-
tion seen through CVMC by assessing the quality of this model and 
by determining the blending function.

In order to parameterize gN N(r), we consider the short- and 
long-range constraints. At short-distance, where ρcontact

N N (r) is an 
accurate description of the two-body density [2], gN N(r) equals 1. 
For large distances, ρN N must approach ρuncorr.

N N . Since ρcontact
N N

falls off approximately as 1/r2 for r > 2 fm, gN N must approach 
(κ −1)/κ in the long-range limit, in order that the pair density ap-
proach ρ(0)

N N . We propose the following model which meets these 
requirements:

gN N(r) =
{

1 r ≤ 0.9 fm,
1
κ

(
κ − 1 + e(0.9 fm−r)/a

)
r > 0.9 fm.

(5)

For r < 0.9 fm, ρN N(r) is modeled well by the contact expres-
sion Eq. (1) (see [2]). For r > 0.9 fm, the contact density and the 
uncorrelated densities are blended, with a characteristic length-
scale, a. In principle, a would depend on the isospin of the pairs 
and on the specific nucleus being studied.

Varying the parameters of Eq. (5) to describe pp, nn and pn
pairs in 16O and 40Ca shows that the same blending function g(r)
can be used to describe all the two-body densities calculated us-
ing CVMC, shown in Fig. 2. CVMC correlation functions are shown 
as points, while our model, described in equation (4), is shown 
with bands, for which the dominant contribution to the uncer-
tainty comes from the contact coefficients, CN N . The uncorrelated 
density, ρ(0)

N N , used by our model is supplied by CVMC calculations 
of the one-body density ρN . The residuals show the difference be-
tween the CVMC density and those of the model, divided by the 
model, with the error bars showing the uncertainties in the CVMC 
densities. Our model is able to reproduce the correlation functions 
for both pp and pn pairs in two different nuclei (as these CVMC 
calculations treat p and n symmetrically, and since 16O and 40Ca 
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