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We study the conductivity from higher derivative electrodynamics in a holographic quantum critical 
phase (QCP). Two key features of this model are observed. First, a rescaling for the Euclidean frequency by 
a constant is needed when fitting the quantum Monte Carlo (QMC) data for the O (2) QCP. We conclude 
that it is a common characteristic of the higher derivative electrodynamics. Second, both the Drude-like 
peak at low frequency and the pronounced peak can simultaneously emerge. They are more evident 
for the relevant operators than for the irrelevant operators. In addition, our result also further confirms 
that the conductivity for the O (2) QCP is particle-like but not vortex-like. Finally, the electromagnetic 
(EM) duality is briefly discussed. The largest discrepancies of the particle–vortex duality in the boundary 
theory appear at the low frequency and the particle–vortex duality holds more well for the irrelevant 
operator than for the relevant operator.

© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Quantum critical (QC) system, which includes quantum criti-
cal phase transition (QCPT) and quantum critical phase (QCP), is 
a long-standing important issue in condensed matter physics [1]. 
Some of the best understood examples are described by strongly 
interacting conformal field theory (CFT) at low energy. A canonical 
example is the superfluid-insulator QCP described by the boson 
Hubbard model.

The real-time dynamics, especially the frequency-dependent 
conductivity σ(ω), at finite temperature is a central and challeng-
ing subject in QC physics [2]. Because of the strongly correlated 
nature of QC system, the conventional perturbative methods in tra-
ditional quantum field theory (QFT) unfortunately lose its power in 
studying the dynamics. The novel non-perturbative techniques and 
methods are called for.

AdS/CFT correspondence [3–6] provides a powerful tool in 
dealing with the real-time dynamics of the strongly interact-
ing QC system lacking quasi-particles. References [8,9,7] con-
struct holographic models based on the Maxwell-Weyl system in 
Schwarzschild-AdS (SS-AdS) to study QC physics, in particular the 
dynamical conductivity σ(ω). By combining high precision quan-
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tum Monte Carlo (QMC) results [7,8,10] for the dynamical con-
ductivity in the O (2) QCP with that from holography [8,9,7], they 
build a quantitative description of the dynamics of QC systems 
lacking quasi-particles and find that the dynamical conductivity 
for the O (2) QCP is particle-like but not vortex-like, which re-
solved the puzzle of O (2) QCP.

Further studies find that the relevant scalar operator plays a 
key role in the dynamics of the QC systems [7]. However, the 
scalar field in the bulk introduced in [7], which is dual to the rel-
evant operator in the boundary field theory, is not a dynamical 
field. To overcome this shortcoming, references [11,12] construct 
a novel neutral scalar hair black brane by coupling Weyl tensor 
with neutral scalar field, which provides a framework to describe 
QC dynamics and the one away from QCP. In particular, the rele-
vant operator of this model acquires a thermal expectation value 
and we can study the dynamical conductivity for a wide range of 
conformal dimensions �.

However, until now AdS/CFT is best understood only at large-
N limit [3–6]. Therefore, it is important to study the universality 
and the speciality of the dynamics of the QC systems. To this end, 
here we extend the studies in [11,12] to include a higher deriva-
tive term by incorporating a interaction between gauge field and 
Weyl tensor and explore the generic and special properties of the 
holographic QC dynamics.
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Fig. 1. Plots of �(u) as the function of u for sample � and α1. Left plot is for � = 1.5 and different α1 and right plot is for α1 = 0.5 and different �.

2. Holographic framework

We start with the following SS-AdS black brane

ds2 = r2
0

L2u2

(
− f (u)dt2 + dx2 + dy2

)
+ L2

u2 f (u)
du2 , (1a)

f (u) = (1 − u)p(u) , p(u) = u2 + u + 1 . (1b)

u = 0 is the asymptotically AdS boundary while the horizon locates 
at u = 1. The Hawking temperature of this system is

T = 3r0

4π L2
. (2)

We study the following bulk action including a massless gauge 
field Aμ , and a scalar field �

S� = − 1

2l2p

∫
d4x

√−g
[
(∇μ�)2 + m2�2 − 2α1L2�C2

]
, (3a)

S A = −
∫

d4x
√−g

( 1

8g2
F

Fμν Xμνρσ Fρσ

)
. (3b)

The scalar field � in bulk gravity is dual to the scalar operator 
O with conformal dimension � = 1

2 (3 ±√
9 + 4m2L2) in boundary 

CFT. In the action S A , F = dA is the curvature of gauge field A and 
the tensor X is

X ρσ
μν = (1 + α2�)I ρσ

μν − 8γ �L4C ρσ
μν , (4)

where I ρσ
μν = δ

ρ
μ δ σ

ν − δ σ
μ δ

ρ
ν is an identity matrix. In the above 

equations (3), we have introduced the factors of lp and L so that 
the coupling parameters gF , α1,2, γ , and the scalar field � are 
dimensionless. Without loss of generality, we set l2p = 1/2, gF =
1 and L = 1 in what follows. Comparing with [11], we introduce 
a new interaction term in Eq. (4) that coupling among the Weyl 
tensor, gauge field and scalar field.

The black brane geometry (1) describes a thermal state in the 
dual boundary CFT. Following the strategy in [11], we introduce 
an interaction term between the scalar field � and the Weyl ten-
sor such that the scalar field have a nontrivial profile in the black 
brane background, which corresponds to a nonvanishing thermal 
expectation value of scalar operator in boundary theory.

From the action (3), we obtain the EOMs for the scalar field and 
gauge field as

(∇2 − m2)� + α1L2C2

− 1

16
(α2 I ρσ

μν − 8γ C ρσ
μν )F μν Fρσ = 0 , (5a)

∇ν(Xμνρσ Fρσ ) = 0 . (5b)

Since here we consider a thermal state, which described by the 
neutral black brane background. In this case, the background gauge 
field is zero. Therefore, Eq. (5a) reduces to

(∇2 − m2)� + α1L2C2 = 0 . (6)

The above EOM determines the profile of the scalar field.
Since the Weyl tensor vanishes in the AdS boundary, the 

asymptotic behavior of �(u) is the same as that without the α1

coupling term, which behaves

�(u) = �0u3−� + �1u� . (7)

We identify �0 as the source, which corresponds to the coupling 
of the boundary QFT and deforms it, and �1 as the expectation. 
The conformal dimension � is constrained in � ≥ 1/2 such that 
the dual CFTs are unitary [13]. When �0 = 0, the dual theory is 
the QCP [11]. If we tune �0 nonzero, the dual theory is away from 
QCP [11]. In this paper, we only focus on the case of �0 = 0.

Combining the falling of �(u) (Eq. (7)) at the boundary u → 0
and the regular requirement of �(u) at the horizon, we can nu-
merically solve this EOM and show the profile of scalar field for 
sample � and α1 in Fig. 1. From this figure, we can see that the 
value of �(u) at the horizon increases with the increase of α1 for 
fixed �. While for fixed α1, the value of �(u) at the horizon in-
creases with the decrease of �.

3. Holographic conductivity

To calculate the frequency-dependent conductivity, we turn on 
the perturbation of the gauge field at zero momentum along y
direction in Fourier space as A y ∼ ay(u)e−iωt and the EOM for the 
gauge field (5b) can be explicitly wrote down as

a′′
y + a′

y

(
f ′

f
+ 3α2�

′ − 2γ u
(

f (3)u� + f ′′ (u�′ + 2�
))

3α2� − 2γ u2� f ′′ + 3

)

+ ω2ay

f 2
= 0 . (8)

And then, the conductivity is given by

σ(ω) = ∂uay

iωay

∣∣∣
u→0

. (9)

Imposing the ingoing boundary condition at the horizon, we can 
numerically solve the EOM (8) and read off the conductivity by 
Eq. (9).

Subsequently, we shall study the conductivity at QCP by tun-
ing �0 = 0. We mainly study the properties of the conductivity 
from higher derivative electrodynamics in the holographic frame-
work described in the last section.

Previously, in [11], only when the α2 term survives, i.e., turning 
off γ here, it has been shown that the conductivity for Euclidean 
frequency can be fitted very well for 
 > 2π T to the QMC data 
for the O (2) QCP [7,8,10]. In fact, before that, the authors in [8]
have found that the QMC data for the O (2) QCP can also be fit-
ted in a simple holographic model in which only the coupling term 
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