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A B S T R A C T

This article focuses on the 2D flow of an incompressible Casson fluid over an unsteady shrinking horizontal sheet
under inclined Lorentz force and Joule heating. The governing partial differential equations (PDEs), which
account for the effect of Buongiorno model, are converted into the nonlinear ordinary differential equations
(ODEs) through similarity variables. An effective method i.e., optimal homotopy analysis method (OHAM) is
employed here to solve the system of presented ODEs. The results are compared and validated with those of
numerical findings available in the literature. It is found that the OHAM can provide an effective way to ensure
convergence of the series solution. Utilizing this fact, the effect of governing physical parameters on the skin
friction coefficient, local Nusselt number and local Sherwood number are thoroughly investigated.

Introduction

Due to the high efficiency of nanofluids in heat and mass transfer,
there has recently been a substantial increase in the number of studies
concerning the nanofluid dynamics. The nanoparticles are between 1
and 100 nm in size. For this reason, the difficulty lies in the modeling of
slip mechanisms which can be easily implemented by the Buongiorno
model [1]. This model, on the other hand, can incorporate the effects of
thermophoresis and Brownian diffusion as two important slip me-
chanisms between the phases. According to the recent research studies,
Sheremet et al. [2] analyzed both thermophoresis and Brownian dif-
fusion as well as buoyancy force of conducting nanofluids in 2D en-
trapped triangular cavities using finite difference method (FDM). Their
results showed that an increase in the Rayleigh number, as opposed to
the average Nusselt number, generates the steady state heat transfer
mode for the upper heated surface. Utilizing the homotopy analysis
method (HAM), Shehzad et al. [3] studied convective heat transfer in a
horizontal symmetric wavy channel based on the Buongiorno model.
The study found that the momentum boundary layer thickness de-
creases with an increase in the Prandtl number in the vicinity of the
surface. Malvandi et al. [4] utilized the modified Buongiorno model
proposed by Yang et al. [5] to develop convective heat transfer of na-
nofluids within a vertical annulus. Also, it is to be noted that the
buoyancy force, which was not investigated by Yang et al. [5], had been
taken into account by Malvandi et al. [4]. Afterwards, Zhu et al. [6]
considered Al2O3-H2O and TiO2-H2O as two types of nanofluids to

analyze heat transfer between two rotating disks and showed that an
increase in Brownian motion parameter may account for changes in
thermal boundary layer thickness.

In rheology, the pseudoplastic behavior is occurred when the fluid
viscosity decreases with an increase in the shear stress. This issue can be
observed in the shear thinning fluids [7]. One of the most important
time-independent fluids associated with this classification is the Casson
model [8] which has extensively been studied during the last decades.
In the sixties, Scott Blair [9], Stoltz and Larcan [10] and Deakin [11]
presented some biological applications of the aforementioned model.
More recently, Abd El-Aziz and Yahya [12] studied the unsteady
magnetohydrodynamic (MHD) slip flow of a Casson fluid over an in-
finite permeable surface and showed that accounting for the effect of
Hall current increases the axial and transverse velocity profiles si-
multaneously. As investigated by Reddy et al. [13], utilizing the fer-
rofluids e.g., Fe3O4 with Casson fluid can enhance heat transfer over an
upper surface of a paraboloid of revolution. They also extended the
approach proposed by Animasaun and Sandeep [14] for nonlinear
thermal radiation and viscous dissipation of ferrofluids. Walicka and
Falicki [15] presented an electrorheological Casson model as a function
of Reynolds number which can predict the pressure distribution be-
tween two parallel disks and concentric spherical surfaces. They
showed that the pressure decreases with an increase in Reynolds
number. Pal et al. [16] took the influence of Joule dissipation and
magnetic field as well as thermal radiation into account to investigate
the flow of a Casson fluid past a vertical stretching sheet, and found that
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using the Runge-Kutta-Fehlberg method together with the shooting
method can represent the fairly accurate results. It is worth mentioning
that more details of the Casson model are set out in Refs. [17–20].

Although there exists a gap in the Navier-Stokes equation to de-
scribe the motion of a non-Newtonian fluid, utilizing these time-in-
dependent fluids can provide a nonlinear relationship between the
shear stress and strain rate. This article deals with the analytical op-
timal solution of 2D flow of an incompressible Casson fluid in the vi-
cinity of an unsteady shrinking horizontal sheet under inclined Lorentz
force and Joule heating based on the Buongiorno model. It should be
noted that there have been no reports of this issue being solved to date.

Governing equations

The rheological equation for the Casson model is given by [8],
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where τij is the Cauchy stress tensor, μB is the plastic dynamic
viscosity of the non-Newtonian fluid, py is the yield stress of the fluid, eij

is the i j( , )th component(s) of the strain rate, =π e eij ij is the product of
the strain rate component(s), πc is the critical value of this product
based on the non-Newtonian fluid and λ is the Casson fluid parameter
[8]. Since >π πc, one can represent [21],
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where μ is the dynamic viscosity of the fluid. By substituting Eq. (2)
into Eq. (3), the kinematic viscosity can be derived as [21],
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where ρ is the density.
For the transient 2D flow in the Cartesian coordinate, the velocity,

temperature and nanoparticle concentration fields take the form,

  = = =u x y t v x y t T x y t C x y t[ ( , , ), ( , , )], ( , , ), ( , , ), (5)

where u and v are the velocity components along the x and y axes,
respectively, t is the time,T is the temperature and C is the nanoparticle
concentration.

The following system of PDEs that govern the transient 2D flow of a
Casson fluid can be written as,
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where σ is the electrical conductivity, B0 is the magnetic field

strength, ψ is the inclination angle of the magnetic field, α(= k
ρcp

) is the

thermal diffusivity, ς(= ρc
ρc

( )
( )

p

f
) is the ratio of effective heat capacity of the

nanoparticle to effective heat capacity of the base fluid, DB is the
Brownian diffusion coefficient, DT is the thermophoresis diffusion
coefficient and ∞T is the ambient temperature. It should be noted that
the underlined terms on the right-hand sides of Eq. (6) indicate the
presence of inclined Lorentz force and Joule heating, respectively.

The associated initial and boundary conditions are stated as follows,

⎧

⎨
⎪

⎩⎪

< = = = =

≥ = = − = = = =

→ → → → ∞

∞ ∞

−

∞ ∞

t u v T T C C x y

t u u x t v v x t T T C C y

u T T C C y

0: 0, 0, , , for all , ,

0: ( , ) , ( , ), , , at 0,

0, , , as ,
w

bx
βt w w w1

(7)

where ∞C is the nanoparticle concentration far from the sheet,
u x t( , )w is the velocity of unsteady shrinking sheet, v x t( , )w is the rate of
mass transfer, Tw and Cw are the temperature and nanoparticle con-
centration of the sheet, respectively, >b 0 is a constant with dimension
(time)−1 and β is a parameter that shows unsteadiness of the problem.

To derive the similarity solution of Eq. (6), the following variables
can be taken as,
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where ζ is the similarity parameter, φ is the stream function which

satisfies the equation of continuity i.e., = −∂
∂

∂
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y
φ
x , θ ζ( ) is the

dimensionless temperature, ϕ ζ( ) is the dimensionless nanoparticle
concentration and f ζ( ) is an ordinary function involved in the stream
function. Herein, one can establish as follows,
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By substituting Eq. (9) into Eq. (6), the following system of ODEs
can be stated as,
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b is the unsteadiness parameter, =Ha σB
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Lewis number. The appropriate boundary conditions are given by,
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where A is the mass suction parameter.
For the sake of practical interest, the skin friction coefficient, local

Nusselt number and local Sherwood number can be expressed as,
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