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A B S T R A C T

Various discontinuities and boundary conditions affect natural frequencies of nanobeams. In this paper, free
lateral vibration of Euler-Bernoulli nanobeam with multiple discontinuities is studied. The governing equations
are developed by using Eringen's nonlocal elasticity theory. Cracks and steps are considered as discontinuities.
Based on wave approach, vibrations take into account as moving waves along the structure. Waves propagate
through waveguide and are reflected and transmitted at the discontinuities and boundaries. The propagation,
reflection and transmission matrices are derived for discontinuities and boundaries. Cracks are modelled by a
massless torsional spring with infinitesimal length and steps are considered as two connected nanobeams with
different cross-sectional areas and mechanical properties. Boundary is formed by combining a torsional and a
translational spring. Also buckyball (as a lumped mass) at the tip of the beam is considered as a boundary
condition. Using propagation and appropriated reflection and transmission matrices for each case, leads to an
analytical comprehensive succinct method so-called wave approach to analyse the free lateral vibration of na-
nobeams. The flexural natural frequencies are derived analytically for cracked or/and stepped nanobeams with
ordinary boundary conditions or buckyball at the tip. The effects of crack severity, changing ratio of cross-
sectional area as step, cracks and steps location, mass of buckyball and small-scale parameter on natural fre-
quencies are deliberated. This approach is demonstrated with a number of examples that can be used as
benchmarks for other works. The results are compared with other methods.

Introduction

Iijima’s [1] milestone paper on carbon nanotubes (CNTs) opened a
new season of nanotechnology developments. Nowadays, multiplicity
capacities and capabilities of nanoelectromechanical system (NEMS)
devices can be found in a number of research publications [2–5].
Eringen [6,7], introduced the nonlocal elasticity theory stating that the
strain field at all points of the substance affects the stress tensor at each
specific point. Numerous research have used the nonlocal elasticity
theory to derive the governing equations. The results for wave propa-
gation (axial, torsional and lateral), buckling and vibration from mo-
lecular mechanics/dynamics and lattice dynamics, are compared with
the results from nonlocal continuum theory. There is a good agreement
between nonlocal continuum modelling and molecular dynamic simu-
lations [8–10]. This endorsement on the results, encourages researchers
to utilize Eringen’s theory for future studies. By using nonlocal elasticity
deflection of cantilever nanobeams [11], lateral vibration of Euler-
Bernoulli nanobeam [12], buckling and vibration of nanotubes [13],
flexural vibration of Timoshenko beam [14] and buckling, bending and

vibration of nanobeams [15,16] have been studied. Thai [17] suggested
a nonlocal shear deformation theory based on constitutive relations of
Eringen’s theory in differential form for bending, buckling, and vibra-
tion of nanobeams. Free lateral vibration of double-walled nanobeam is
investigated by Zhang et al. [18] and, Murmu and Adhikari [19] via
nonlocal elasticity. Also, nonlinear vibration of embedded multi-walled
Timoshenko nanobeams based on Eringen’s theory have been studied
[20,21]. Vibration analysis of functionally Graded (FG) nanostructures
[22,23] and behaviour of bio-nanosystems [24] are also of interest for
researchers. Wang [25] studied wave propagation in CNTs and ex-
tracted dispersion relation for Euler-Bernoulli and Timoshenko nano-
beams. Narendar and Gopalakrishnan [26] presented the effect of
small-scale on wavenumber and wave speeds of nanorods by explicit
expressions. In another work, Narendar [27] added the effects of lateral
inertia on wave propagation in nanorods. Narendar and Gopa-
lakrishnan [28] studied wave propagation in rotating nanotube. Ay-
dogdu [29] investigated the axial wave propagation in multiwalled
carbon nanotubes. The effects of nonlocal parameters and Van der
Waals forces are considered in his work. He also derived explicit
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expressions for wave speeds.
Computational methods such as Differential Quadrature Method

(DQM) [30–34], Fourier solution [35], Generalized Differential Quad-
rature (GDQ) [36], Navier’s Method [37], Finite Element Method (FEM)
[38,39], Wentzel–Kramers–Brillouin (WKB) method [40,41] and the
Galerkin method [42–44] are utilized to solve the nonlocal governing
equations of nanostructures.

Steps and cracks are the most common cited defects in nanos-
tructures. However, they may be formed intentionally to achieve the
desired frequencies of nanostructures. Steps are considered as abrupt
changes in cross-sectional area such as CNT heterojunctions or two
connected nanobeam portions with different material properties
[45,38]. Crack(s) can be shaped during production process for various
reasons. Thermal expansion through heating, causes to create crack(s)
in ZnO nanowire and nanobelt [46,47]. Cracks apply local flexibility
and stiffness in structure. With regards to the importance of the subject
of crack effects on mechanical behaviours of nanostructures, a sig-
nificant percentage of the research have been dedicated to this field
[48–55]. In lateral vibration analysis, the crack is modelled as an
equivalent rotational spring which is placed at the crack location
[50–52]. This massless spring with infinitesimal length, connects two
nanobeam segments in each side of the crack. The same approach is
used with translational spring for axial vibration [53,54] and rotational
spring for torsional vibration [55]. Roostai and Haghpanahi [51] ana-
lysed free vibration of multi cracked nanobeams with different
boundary conditions. They used common classic boundary conditions
to solve the problem and as will be shown, this assumption has a great
impact on natural frequencies. Also, by increasing the number of
cracks, the solution becomes more complicated progressively. In the
present work, steps are considered as discontinuities besides the cracks.
Moreover, the nonlocal boundary conditions and also a lumped mass at
the tip as a boundary condition are deliberated. Furthermore, in-
creasing the number of discontinuities adds no difficulty in the present
approach. Buckminsterfullerene or buckyball is a spherical fullerene
which can be attached at the tip of a nanotube [56,57]. In cases of
nanosensors/resonators, changes in the mass of buckyballs cause a shift
in nanostructure resonant frequencies [58]. This feature in NEMS ap-
plication, allows the possibility of using the nanobeams as tuneable
nanoresonators. Murmu and Adhikari [59] derived a transcendental
closed-form equation for axial natural frequencies with arbitrary mass
of buckyball. They have shown a high dependency of natural fre-
quencies on the mass of the buckyball. Also, the effect of nonlinearity
on mechanical behaviour in nanostructures covers a great part of re-
search [60–62]. Furthermore, it is shown that the effect of surface layer
could be as important as the nonlocal effect [63–68]. The effect of
surface energy decreases by increasing the thickness of nanostructure
[65].

Vibrations can be taken into account as propagating waves in a
structure as a waveguide. Many research deal with wave propagation,
reflection and transmission relations in solid medium [69–73]. As-
sembling these relations provides a method for vibration analysis,
named as wave approach. Mei used this approach to study free axial,
torsional and lateral vibration of classical rods and Euler-Bernoulli
beams with lumped masses at the tips [74], and Timoshenko beams
[75]. Mei [76] presented an analytical solution for coupled lateral and
longitudinal vibrations of portal planar frame and L-shaped structures.
She also investigated longitudinal vibration rods with four different rod
theories [77]. Mei and Sha [78] applied the wave method to analyse
simple spatial structures. For nanostructures, by using this method,
Loghmani et al. [79] studied axial vibration of multi cracked and
stepped nanorods. Baohui et al. [80] analysed free lateral vibration of
nanotube which are conveying fluid. Bahrami and Teimourian in-
vestigated free vibrations of Euler-Bernoulli [81] and Timoshenko [82]
nanobeams.

The aim of the present work is vibration analysis of multi cracked,
stepped nanobeams by using wave approach. The governing equation

for lateral vibration of Euler-Bernoulli nanobeam is developed based on
Eringen’s nonlocal elasticity theory. Expressions for bending moment,
shear force, continuity and equilibrium conditions at cracks, steps,
general boundary and boundary with lumped mass are derived. Then,
these relations are described in wave formulation form and the wave
propagation, transmission and reflection matrices are obtained for
different discontinuities and boundary conditions. Subsequently, the
obtained matrices are combined for free lateral vibration analysis via
wave approach to achieve natural frequencies. The approach is applied
to several cases. As will be shown, there is no limitation to the number
of cracks and steps for the analysis and in each case an algebraic
equation is obtained. In some cases, an exact closed-form solution is
derived and in other ones the achieved explicit expressions should be
solved numerically. The considered boundary conditions in this work
are: simply-simply supported (S-S), clamped-clamped (C-C), clamped-
simply supported (C-S), clamped-free (C-F) and cantilever with a
lumped mass at tip. The effects of crack severity, changing ratio of
cross-sectional area as step, crack and step location, mass of buckyball
and small-scale parameter on natural frequencies are discussed. In the
present work, the effects of multiple discontinuities on natural fre-
quencies are illustrated both generally and each one alone. As will be
shown, the presented approach is applicable for more complicated si-
tuations. The results are compared with other existing methods.

Governing equations of nanobeam based on nonlocal elasticity

In the nonlocal elasticity theory [6,7], the stress tensor at a re-
ference point depends on the strain field at all points of the medium.
Experimental investigations on phonon dispersion and lattice dynamics,
have defended this statement. This theory states that the relationship of
stress and strain for a homogeneous elastic solid is:

∫= − ′ ∀ ∈x x V Vσ x φ η t d x x′( ) ( , ) ( ),ij V ij (1)

in which σij and tij are the nonlocal and local stress tensors, respectively.
The integration covers over the full medium volume V . −x xφ η′( , ) is
the nonlocal modulus which shows the effect of the strain at the point
x′ on the stress at the point x and η is the property of the substance
which is based on internal and external length characteristic (e.g.
length of two carbon molecule bonds and length of nanobeam). Non-
local constitutive relations for the Euler- Bernoulli nanobeam can be
described as [11]:
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where εxx denotes the normal strain and is given by:
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in which x and z are the coordinates of the length and midplane of the
beam, respectively and w is the lateral displacement. According to the
definition, the bending moment is:

∫=M zσdA (4)

From Eqs. (2), (3) and (4) the bending moment M can be explained
as:
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where I presents the second moment of area. Equilibrium conditions for
the free lateral vibrating Euler-Bernoulli beam is [18]:
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