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H I G H L I G H T S

• Statistics and machine learning
methods are compared and applied on
frozen ground estimation of the Tibetan
Plateau.

• Permafrost and maximum thickness of
seasonally frozen ground distribution
are mapped over the Tibetan Plateau.

• Around 26% and 44% of the current per-
mafrost is projected to disappear by the
2040s and 2090s under RCP 4.5 sce-
nario.

• Decreases in maximum seasonal frozen
depth are larger at higher elevation
compared with the decreases at lower
elevation.
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Frozen ground degradation profoundly impacts the hydrology, ecology and human society on the Tibetan Plateau
(TP) and the downstream regions. The spatial distribution and potential changes of permafrost and maximum
thickness of seasonally frozen ground (MTSFG) on the TP is of great importance and needsmore in-depth studies.
This study maps the permafrost and MTSFG distribution in the baseline period (2003−2010) and in the future
(2040s and 2090s) with 1-km resolution. Logistic regression (LR), support vector machine (SVM) and random
forest (RF) are validated using 106 borehole observations and proved to be applicable in estimating permafrost
distribution. According to the majority voting results of the three algorithms, 45.9% area of the TP is underlain
by permafrost in the baseline period, and respectively 25.9% and 43.9% of the current permafrost will disappear
by the 2040s and the 2090s projected bymean of the projections from the five General CirculationModels under
the Representative Concentration Pathway 4.5 scenario. SVM performs better in spatial generalization than RF
based on the results of nested cross validation. According to the MTSFG results derived from SVM, the most dra-
matic decrease inMTSFGwill occur in the southwestern TP,which is projected to exceed 50 cm in the2090s com-
pared with the baseline period. This study introduces the statistics and machine learning algorithms to frozen
ground estimation on the TP, and the high resolution permafrost and MTSFG maps produced by this study can
provide useful information for future studies on the third pole region.
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1. Introduction

Permafrost is defined as the sub-surface material having a tempera-
ture of less or equal to 0 °C during at least two consecutive years
(Gruber, 2012). The Tibetan Plateau (TP), also known as the third pole
of the globe, has the largest area of alpine permafrost in the world
(Qiu, 2008; Immerzeel et al., 2010; Cuo et al., 2015). As climate
warms, the active layer thickness increases and the permafrost disap-
pearance have been reported on the TP (Li et al., 2008; Wu et al.,
2015; Luo et al., 2016). In addition to permafrost, the regions with ab-
sence of permafrost include seasonally frozen ground region which
freezes and thaws annually, as well as unfrozen ground which never
freezes. The maximum thickness of seasonally frozen ground (MTSFG)
decreased continuously in the past decades both on the TP and in
other regions of the world, which reflects the comprehensive effects of
changes in temperature, soil moisture conditions and site-specific prop-
erties and can affect the decomposition of soil organicmatter and green-
house gas exchanges between the land surface and the atmosphere
(Frauenfeld and Zhang, 2011; Peng et al., 2017).

Frozen ground can influence the eco-hydrological processes on the
TP via runoff generation, groundwater-surface water interaction, soil
moisture conditions as well as other means (Cheng and Wu, 2007; Jin
et al., 2009; Yang et al., 2010; Wang et al., 2018b). Understanding the
spatial pattern of frozen ground provides the basis for quantitatively
assessing the eco-hydrological processes on the TP, which calls for
more reliable frozen ground maps at finer resolution. In a changing cli-
mate, frozen ground changes can greatly affect the regional hydrology
in the TP and water resources security in the downstream, where
more than 1.4 billion people feed on the rivers originating from the TP
(Immerzeel et al., 2010). The projections of future frozen ground
changes can enable policy makers to develop appropriate strategies
prior to the anticipated changes (Guo and Wang, 2016). Although
there are already studies projecting global permafrost changes in the fu-
ture (Slater and Lawrence, 2013; Guo and Wang, 2016), very limited
studies focus on the TP (Lu et al., 2017) and the spatial resolution is
not high enough for hydrological application. Therefore, more studies
are needed to project the future frozen ground changes on the TP, in-
cluding both permafrost and MTSFG changes at finer resolution.

Borehole observations provide solid information for mapping frozen
ground distribution. However, they are hard to obtain, very expensive,
and restricted to the point scale (Zhang et al., 2005; Frauenfeld and
Zhang, 2011; Wu et al., 2015). Consequently, simple empirical models
are developed to map the large scale permafrost and MTSFG distribu-
tion on the TP (Zhao et al., 2017). For example, Li and Cheng (1999) de-
veloped an elevation model to map permafrost distribution by
determining the lower limit of permafrost; Nan et al. (2002) established
a mean annual ground temperature (MAGT) model to determine the
permafrost across the TP. These models, however, are established
based on limited and unevenly distributed in-situ observations, and
they are derived from the static variables which are hard to be used in
future projections.

Meanwhile, semi-empirical models with simplified physical pro-
cesses applicable to high-latitude permafrost were used for the frozen
ground simulation on the TP, including the surface frost number
model, temperature at top of permafrost (TTOP) model, Stefan model
(Zou et al., 2017), etc. However, if the underlying assumptions of the
models are notmet, their spatial generalization ability needs to be care-
fully assessed (Walvoord and Kurylyk, 2016). Process-based models
have also been applied to simulate frozen ground on the TP at larger
scale, which considered both the thermal and hydrological processes,
including CLM4 model (Guo et al., 2012), GIPL2 model (Qin et al.,
2017a), GBEHM model (Qin et al., 2017b; Gao et al., 2018), Noah
model (Wu et al., 2018), etc. Nevertheless, the process-based models
still have limitations in describing the complicated cryospheric and
eco-hydrological processes using explicit equations due to limited un-
derstanding of the cold region environment. They often make

simplifications to certain physical processes, introduce plenty of param-
eters, and are usually computational intensive (Walvoord and Kurylyk,
2016).

Although in-situ observations like boreholes and testing pits are still
rare on the TP, nowadays more and more spatial datasets including to-
pography, temperature and soil properties are available with the assis-
tance of new technologies like remote sensing. This makes the data-
driven methods including statistics and machine learning methods po-
tentially applicable in estimating the frozen ground on the TP (Li et al.,
2011; Lary et al., 2016). The statistics and machine learning algorithms
can be promising when the relationships between the explained and
explanatory variables are hard to explicitly described, but they might
also encounter problems like overfitting and underfitting (Domingos,
2012), and the performances of different algorithms might differ for a
given problem hence need to be evaluated. The statistics and machine
learning methods have been adopted in many fields of geoscience,
and have also been introduced into cryospheric researches recently.
Deluigi et al. (2017) used different statistics andmachine learning algo-
rithms to map the potential permafrost distribution in Western Swiss
Alps. Shi et al. (2018) used the decision tree method to get the 1-km
permafrost map on the TP. The performance of different categories of
statistics and machine learning algorithms in frozen ground estimation
on the TP, however, have never been evaluated and compared. Besides,
thesemethodshave not yet been applied tomap theMTSFGdistribution
aswell as the future frozen ground changes on the TP, which are impor-
tant for the third pole region.

This study adopts statistics andmachine learning algorithms tomap
the current and future frozen ground distribution, including permafrost
and MTSFG on the TP. The objectives of this study are to (1) evaluate
and compare theperformances of different statistics andmachine learn-
ing methods in frozen ground estimation on the TP; (2) generate high-
resolution permafrost and MTSFG distribution maps on the TP; (3) pro-
ject the response of frozen ground to the future climate change on the
TP.

2. Methods

In this study, statistics and machine learning methods are adopted
for two objectives: first, classification for mapping permafrost distribu-
tion, more specifically, whether permafrost exists in a certain grid on
the Tibetan Plateau (TP); second, regression for predicting MTSFG dis-
tribution in non-permafrost region. This study selects logistic regression
(LR), support vector machine (SVM) and random forest (RF) for classi-
fication. These algorithms are selected because they belong to three spe-
cific sub-domains of learning techniques, respectively linear parametric
learning, non-parametric learning and ensemble learning (Deluigi et al.,
2017). LR, despite its name, is only applicable for classification. There-
fore, only SVM and RF are adopted and compared for regression. The
three selected algorithms are introduced in supplementary material
(see Text S1). Detailed procedures for addressing the two problems
will be introduced in Sections 2.1 and 2.2.

2.1. Mapping the permafrost distribution

The entire Tibetan Plateau (TP) is classified into two frozen ground
types: permafrost and non-permafrost regions in this study. All esti-
mates exclude glaciers and lakes within the TP boundary. Different
types of permafrost, i.e., continuous and discontinuous permafrost, are
not distinguished. Seasonally frozen ground and unfrozen ground are
both regarded as non-permafrost regions. The whole procedure for es-
tablishing the classificationmodels andmapping the current and future
permafrost distribution is illustrated as Fig. 1. Six variables that affect
the thermal state of frozen ground are selected as the input for training
the models: the mean annual air temperature (MAAT), the ratio of
mean annual ground surface temperature to mean annual air
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