Generalized Log-sine integrals and Bell polynomials

Derek Orr

University of Pittsburgh, Department of Mathematics, 301 Thackeray Hall, Pittsburgh, PA 15260, USA

ARTICLE INFO

Article history:

Received 30 June 2017
Received in revised form 16 July 2018

MSC:

primary 33E20
11B73
secondary 11M32

Keywords:

Log-sine integral
Combinatorics
Bell polynomial
Riemann zeta function
Harmonic numbers
Binomial coefficients

Abstract

In this paper, we investigate the integral of $x^{n} \log ^{p}(\sin (x))$ for natural numbers n and p. In doing so, we recover some well-known results and remark on some relations to the logsine integral $\mathrm{Ls}_{n+p+1}^{(n)}(\theta)$. Later, we use properties of Bell polynomials to find an expression for the derivative of the central binomial and shifted central binomial coefficients as finite sums of polygamma functions and harmonic numbers.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

The Log-sine integral

$$
\operatorname{Ls}_{n}(\theta):=-\int_{0}^{\theta}\left(\log \left|2 \sin \left(\frac{x}{2}\right)\right|\right)^{n-1} d x
$$

and its generalized expression

$$
\operatorname{Ls}_{n}^{(m)}(\theta):=-\int_{0}^{\theta} x^{m}\left(\log \left|2 \sin \left(\frac{x}{2}\right)\right|\right)^{n-m-1} d x
$$

have been widely studied in previous papers (see [1-7]). The Log-sine integral has wide importance in many problems in mathematics and physics, including the calculations of higher order terms in the ϵ-expansion of Feynman diagrams. A very nice identity was given in [1] by expressing

$$
S(k):=\sum_{n=1}^{\infty} \frac{1}{n^{k}\binom{2 n}{n}}
$$

as

$$
S(k)=\frac{(-2)^{k-1}}{(k-2)!} \mathrm{Ls}_{k}^{(1)}\left(\frac{\pi}{3}\right), k \in \mathbb{N}
$$

[^0]Evaluating Log-sine integrals can be difficult; this paper will shed light on a more elementary and perhaps quicker way of computing these integrals. We will focus on a similar integral,

$$
F(n, m, z):=\int_{0}^{z} x^{n} \sin ^{2 m}(x) d x
$$

We can also define

$$
G(n, m, z):=\int_{0}^{z} x^{n}\left(2 \sin \left(\frac{x}{2}\right)\right)^{2 m} d x
$$

and one can easily see that

$$
\begin{equation*}
G(n, m, 2 z)=4^{m} 2^{n+1} F(n, m, z) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
-\left.\frac{\partial^{p} G(n, m, z)}{\partial m^{p}}\right|_{(n, 0, z)}=2^{p} \mathrm{Ls}_{p+n+1}^{(n)}(z) \tag{2}
\end{equation*}
$$

As we discuss results about $F(n, m, z)$, we will add in remarks for $G(n, m, z)$ and thus for the log-sine integral. The goal of this paper is to find a formula for $I(n, p, z):=\int_{0}^{z} x^{n} \log ^{p}(\sin (x)) d x$ for natural numbers n and p at certain z-values. This is the more general version of $\int_{0}^{z} x^{n} \log (\sin (x)) d x$, which has a known expression in terms of Clausen functions (see [8]). This could also be thought of as a variation of the generalized Log-sine integral that is related to $G(n, m, z)$ and $F(n, m, z)$. In this paper, we will use a different method from most; this method will be explained after we define several special functions. First, the Riemann zeta function and the polylogarithm function are defined by

$$
\zeta(s)= \begin{cases}\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\frac{1}{1-2^{-s}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{s}}, & \operatorname{Re}(s)>1 \tag{3}\\ \frac{1}{1-2^{1-s}} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}}, & \operatorname{Re}(s)>0, s \neq 1\end{cases}
$$

and

$$
\begin{equation*}
\operatorname{Li}_{n}(z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{n}}, \quad n \in \mathbb{N} \backslash\{1\}, \quad|z| \leq 1 \tag{4}
\end{equation*}
$$

respectively. Euler discovered the now famous closed formula for $\zeta(2 k)$, given by

$$
\begin{equation*}
\zeta(2 k)=\sum_{n=1}^{\infty} \frac{1}{n^{2 k}}=\frac{(-1)^{k+1} B_{2 k}(2 \pi)^{2 k}}{2(2 k)!}, \quad k \in \mathbb{N}_{0} \tag{5}
\end{equation*}
$$

where B_{n} are the Bernoulli numbers, defined by

$$
\frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} z^{n}, \quad|z|<2 \pi
$$

It is also clear that

$$
\begin{equation*}
\operatorname{Li}_{n}(1)=\zeta(n), \quad \operatorname{Li}_{n}(-1)=-\left(1-2^{1-n}\right) \zeta(n), \quad n \in \mathbb{N} \backslash\{1\} \tag{6}
\end{equation*}
$$

Next we introduce the generalized hypergeometric function

$$
{ }_{p} F_{q}\left(a_{1}, a_{2}, \ldots, a_{p} ; b_{1}, b_{2}, \ldots, b_{q} ; z\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \cdots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k}\left(b_{2}\right)_{k} \cdots\left(b_{q}\right)_{k}} \frac{z^{k}}{k!}
$$

where

$$
\begin{equation*}
(a)_{k}=\frac{\Gamma(a+k)}{\Gamma(a)}=a(a+1)(a+2) \cdots(a+k-1) \tag{7}
\end{equation*}
$$

is the Pochhammer symbol or rising factorial. If $a_{1}=a_{2}=\cdots=a_{i}=a$, we will use the notation ${ }_{p} F_{q}\left(\{a\}^{i}, a_{i+1}, \ldots, a_{p} ; b_{1}\right.$, $\left.b_{2}, \ldots, b_{q} ; z\right)$. A special case used in the paper is

$$
{ }_{q+1} F_{q}\left(\{1\}^{q+1} ;\{2\}^{q} ; z\right)=\sum_{k=0}^{\infty} \frac{(1)_{k}(1)_{k} \cdots(1)_{k}}{(2)_{k}(2)_{k} \cdots(2)_{k}} \frac{(1)_{k} z^{k}}{k!}
$$

https://daneshyari.com/en/article/10138866

Download Persian Version
https://daneshyari.com/article/10138866

Daneshyari.com

[^0]: E-mail address: djo15@pitt.edu.

