Accepted Manuscript

Title: Al_2O_3 support triggering highly efficient photoreduction of CO_2 with H_2O on noble-metal-free CdS/Ni₉S₈/Al₂O₃

Authors: Sha Li, Qianqian Wang, Xiaoliang Yan, Hua-Qiang Zhuang, Chen Yuan, Junpeng Feng, Meijun Wang, Ruifeng Li, Wenyang Li, Yun-Xiang Pan

PII:	S0926-3373(18)30798-7
DOI:	https://doi.org/10.1016/j.apcatb.2018.08.060
Reference:	APCATB 16960
To appear in:	Applied Catalysis B: Environmental
Received date:	13-4-2018
Revised date:	14-8-2018
Accepted date:	23-8-2018

Please cite this article as: Li S, Wang Q, Yan X, Zhuang H-Qiang, Yuan C, Feng J, Wang M, Li R, Li W, Pan Y-Xiang, Al₂O₃ support triggering highly efficient photoreduction of CO₂ with H₂O on noble-metal-free CdS/Ni₉S₈/Al₂O₃, *Applied Catalysis B: Environmental* (2018), https://doi.org/10.1016/j.apcatb.2018.08.060

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Al₂O₃ support triggering highly efficient photoreduction of CO₂ with H₂O on noblemetal-free CdS/Ni₉S₈/Al₂O₃

Sha Li,^{a,1} Qianqian Wang,^{b,1} Xiaoliang Yan,^{c,*} Hua-Qiang Zhuang,^d Chen Yuan,^c Junpeng Feng,^c

Meijun Wang,^c Ruifeng Li,^c Wenyang Li,^e Yun-Xiang Pan^{b,*}

^a College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China

^b Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

^c College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024,

P. R. China

^d College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, P. R. China

^e School of Mechanical and Power Engineering, Dalian Ocean University, Dalian 116023, P. R. China

¹ These authors contributed equally to this work.

Corresponding Authors

(X.-L. Yan) E-mail: yanxiaoliang@tyut.edu.cn;

(Y.-X. Pan) E-mail: yxpan81@sjtu.edu.cn.

Graphical Abstract

Download English Version:

https://daneshyari.com/en/article/10138960

Download Persian Version:

https://daneshyari.com/article/10138960

Daneshyari.com