Accepted Manuscript

Title: Titania photonic crystal photocatalysts functionalized by graphene oxide nanocolloids

Authors: Angeliki Diamantopoulou, Elias Sakellis, George Em. Romanos, Spyros Gardelis, Nikolaos Ioannidis, Nikolaos Boukos, Polycarpos Falaras, Vlassis Likodimos

PII:	S0926-3373(18)30818-X
DOI:	https://doi.org/10.1016/j.apcatb.2018.08.080
Reference:	APCATB 16980
To appear in:	Applied Catalysis B: Environmental
Received date:	21-5-2018
Revised date:	17-8-2018
Accepted date:	30-8-2018

Please cite this article as: Diamantopoulou A, Sakellis E, Romanos GE, Gardelis S, Ioannidis N, Boukos N, Falaras P, Likodimos V, Titania photonic crystal photocatalysts functionalized by graphene oxide nanocolloids, *Applied Catalysis B: Environmental* (2018), https://doi.org/10.1016/j.apcatb.2018.08.080

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Titania photonic crystal photocatalysts functionalized by graphene oxide nanocolloids

Angeliki Diamantopoulou¹, Elias Sakellis², George Em. Romanos², Spyros Gardelis¹, Nikolaos Ioannidis², Nikolaos Boukos², Polycarpos Falaras^{2,*}, Vlassis Likodimos^{1*}

¹Section of Solid State Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, 15 784, Greece ²Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece

**Corresponding authors* E-mail address: <u>vlikodimos@phys.uoa.gr</u>; Tel.: +30 2107276824 E-mail address: <u>p.falaras@inn.demokritos.gr</u>; Tel.: +30 2106503644

Graphical abstract

Highlights

- Photonic band gap engineered TiO₂ inverse opals were fabricated by co-assembly.
- TiO₂ photonic films were surface functionalized by graphene oxide nanocolloids.
- NanoGO functionalization enhanced pollutant adsorption by the inverse opals.
- Slow photon amplified dye degradation was evinced for UV-Vis and visible light.
- Interfacial electron transfer improved further the photocatalytic efficiency.

Download English Version:

https://daneshyari.com/en/article/10138985

Download Persian Version:

https://daneshyari.com/article/10138985

Daneshyari.com