Accepted Manuscript

Title: Defects-Engineering of Magnetic γ -Fe₂O₃ Ultrathin Nanosheets/Mesoporous Black TiO₂ Hollow Sphere Heterojunctions for Efficient Charge Separation and the Solar-Driven Photocatalytic Mechanism of Tetracycline Degradation

Authors: Liping Ren, Wei Zhou, Bojing Sun, Haoze Li, Panzhe Qiao, Yachao Xu, Jiaxing Wu, Kuo Lin, Honggang Fu

PII: S0926-3373(18)30767-7

DOI: https://doi.org/10.1016/j.apcatb.2018.08.033

Reference: APCATB 16933

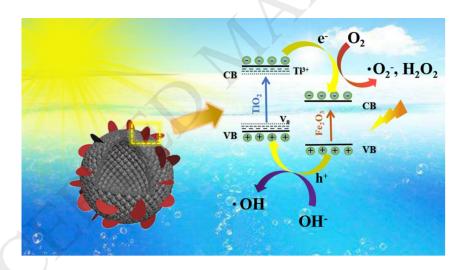
To appear in: Applied Catalysis B: Environmental

Received date: 11-7-2018 Revised date: 10-8-2018 Accepted date: 15-8-2018

Please cite this article as: Ren L, Zhou W, Sun B, Li H, Qiao P, Xu Y, Wu J, Lin K, Fu H, Defects-Engineering of Magnetic γ-Fe₂O₃ Ultrathin Nanosheets/Mesoporous Black TiO₂ Hollow Sphere Heterojunctions for Efficient Charge Separation and the Solar-Driven Photocatalytic Mechanism of Tetracycline Degradation, *Applied Catalysis B: Environmental* (2018), https://doi.org/10.1016/j.apcatb.2018.08.033

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT


Defects-Engineering of Magnetic γ -Fe₂O₃ Ultrathin Nanosheets/Mesoporous Black TiO₂ Hollow Sphere Heterojunctions for Efficient Charge Separation and the Solar-Driven Photocatalytic Mechanism of Tetracycline Degradation

Liping Ren, Wei Zhou*, Bojing Sun, Haoze Li, Panzhe Qiao, Yachao Xu, Jiaxing Wu, Kuo Lin, Honggang Fu*

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China

Email: fuhg@vip.sina.com, zwchem@hotmail.com

Graphic abstract

Defect-engineered γ-Fe₂O₃/mesoporous black TiO₂ hollow sphere

heterojunctions are fabricated by metal-ion intervened hydrothermal technology and high-temperature hydrogenation reduction, which exhibit efficient charge separation and boosting solar-driven photocatalytic degradation performance of biotoxic tetracycline due to ultrathin γ -Fe₂O₃ nanosheets with narrow bandgap offering more surface active sites, the hollow structure and the defect engineering enhancing solar-light-harvesting and spatial separation of photogenerated charge carriers.

Download English Version:

https://daneshyari.com/en/article/10138990

Download Persian Version:

https://daneshyari.com/article/10138990

<u>Daneshyari.com</u>