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a b s t r a c t

Statistical inferencemethodology in dynamic factormodels (DFMs) is extended to themul-
tiple testing context based on a central limit theorem for empirical Fourier transforms of
multivariate time series. This theoretical result allows for employing a vector ofWald-type
test statistics which asymptotically follows a multivariate chi-square distribution under
the global null hypothesis when the observation horizon tends to infinity. Multiplicity-
adjusted asymptotic multiple test procedures based on Wald statistics are compared
with a model-based bootstrap procedure proposed in recent previous work. Monte Carlo
simulations demonstrate that both the asymptotic multiple chi-square test with an appro-
priate multiplicity adjustment and the bootstrap-based multiple test procedure keep the
family-wise error rate approximately at the predefined significance level. The estimation
algorithm as well as the implementation of the testing procedures is described in detail
and a real-life application is performed on European commodity data.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction and motivation 1

A dynamic factormodel (DFM) is amultivariate time seriesmodel, where it is assumed that the observational process can 2

be decomposed into the sumof latent commonand idiosyncratic factors. The dynamic nature of the process is captured either 3

by autocorrelation in common or idiosyncratic components, or both, or the dynamic influence of the common components 4

on the observational process. The common factors are assumed to capture the significant part of the cross-correlation of 5

the original time series, whereas the dynamics pertaining only to the individual series are contained in the idiosyncratic 6

factors. Due to these characteristics, DFMs can be utilized as a dimension reduction tool as well as to provide meaningful 7

interpretations of the dynamics driving certain observational processes. Because of their interpretability and modeling 8

flexibility, DFMs have been widely employed in economics and finance; see, for example, Sargent and Sims (1977), Forni 9

et al. (2000) and Stock and Watson (2011). 10

The parameters of a DFM can be estimated both parametrically and non-parametrically in the time as well as in the 11

frequency domain. Classical time-domain estimation procedures employ maximum-likelihood-based methods such as 12

the expectation maximization (EM) algorithm, see, e.g., Watson and Engle (1983), or non-parametric methods based on 13

extracting principal components; see, for instance, Stock and Watson (2002). Recently, the frequency domain analog of the 14

EM-based method has been proposed by Fiorentini et al. (2016) and principal components-based procedures have been 15

extended to the frequency domain by Forni et al. (2000). An alternative parametric estimation method was suggested 16

by Geweke (1977), Geweke and Singleton (1981) and represents an adaptation of the method originally developed for 17

estimating the parameters of the covariance matrix of a static factor model by Lawley (1940) and Jöreskog (1967). Whereas 18
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methods based on the EM algorithm and principal components are traditionally used to estimate larger-scale DFMs, smaller-1

scale DFMs can be efficiently estimated via direct optimization of the likelihood function. In the present paper we consider2

small-scale DFMs, thus, we employ the method of direct optimization of the likelihood and provide a detailed description of3

its step-by-step implementation.4

With the introduction of DFMs an important question has been raised as of deciding on the presence of dynamics in the5

commonaswell as in the idiosyncratic components. Correctmodel specification is especially crucialwhen the cross-sectional6

dimension is small as, e.g., neglecting the dynamics in the idiosyncratic factors may lead to erroneousmodel selection and to7

a subsequent misinterpretation of the model; cf. Maravall (1999) and Fiorentini et al. (2013). Testing procedures for model8

specification in the DFM context include likelihood-ratios (LR) tests, see Geweke and Singleton (1981), Lagrange multiplier9

(LM) test, seeWatson and Engle (1983), Fernández (1990) and Fiorentini et al. (2013), as well as Wald tests, see Geweke and10

Singleton (1981). Fiorentini et al. (2013) offer an alternative LM testing approach to check the factors for autocorrelation.11

However, theirmethod is initially developed for a single common factor case and has to be extended to themultiple common12

factor context first.13

Whereas these methods allow testing each single factor for autocorrelation separately, in the present work we address14

the question of testing for autocorrelation of the factors simultaneously, thus, accounting for themultiplicity of the problem.15

To this end we extend the Wald test for the parameters of the spectral density matrix of the exact stationary DFM as16

in Geweke and Singleton (1981) to the multiple testing context. This extension is based on a multivariate central limit17

theorem in sequence space for empirical Fourier transforms of the observational process, see Dickhaus and Pauly (2016).18

Asymptotic normality of the Fourier transforms leads to asymptoticmultivariate chi-square distributions for vectors ofWald19

statistics which can be used as test statistics in multiple test problems regarding the parameters of the spectral density of20

the observational process. Moreover, we compare the performance of such asymptotic tests based on Wald statistics with21

tests which are based on a bootstrap approximation of the finite-sample distribution of such vectors of test statistics, as22

outlined inDickhaus and Pauly (2016). The idea is to contrast the generic approachwhich does not use the actual dependence23

structure with the bootstrap procedure which is based on replicating the dependence structure present in the data.24

Thus, we address two important open problems of Dickhaus and Pauly (2016), namely, (i) the implementation of the25

proposed estimation and testing methodology, and (ii) the numerical comparison of the multivariate chi-square and the26

bootstrap approximations of the null distribution of the vector of test statistics. From the point of view of data analysis, our27

methodology can be used to address, among others, the following two problems.28

Problem 1. Do the idiosyncratic factors have a non-trivial autocorrelation structure?29

Problem 2. Do the common factors have a lagged influence on the observational process?30

We will exemplify the proposed methodology by means of these two problems. The paper is organized as follows.31

Section 2 summarizes the statistical methodology underlying our work. For technical details, we refer to (Dickhaus and32

Pauly, 2016). We explain how vectors of Wald statistics arise in the context of DFMs when several linear hypotheses have to33

be tested simultaneously, as it is the case for Problems 1 and 2. Furthermore, the two approximation methods for the null34

distribution of such vectors (chi-square and bootstrap) are discussed. Section 3 describes the estimation of DFM parameters,35

Section 4 presents numerical results from simulation studies, and Section 5 is devoted to the analysis of real data. We36

conclude with a discussion in Section 6.37

2. Statistical methodology38

In this section, we summarize the statistical concepts underlying the work.39

2.1. Dynamic factor model40

We consider DFMs of the form41

X(t) =

∞∑
s=−∞

Λ(s) f(t − s) + ε(t), 1 ≤ t ≤ T , (1)42

where X = (X(t) : 1 ≤ t ≤ T ) denotes a p-dimensional, covariance-stationary stochastic process in discrete time43

with mean zero, f(t) = (f1(t), . . . , fk(t))⊤ with k < p denotes a k-dimensional vector of so-called common factors and44

ε(t) = (ε1(t), . . . , εp(t))⊤ denotes a p-dimensional vector of ‘‘specific’’ or ‘‘idiosyncratic’’ factors. We assume that the model45

dimensions p and k are fixed, while the observation horizon (i.e., sample size) T tends to infinity. As mentioned before, the46

underlying interpretation of (1) is that the dynamic behavior of the process X can be approximated by a lower-dimensional47

‘‘latent’’ process f. The entry (i, j) of the matrix Λ(s) quantitatively reflects the influence of the jth common factor at lead or48

lag s, respectively, on the ith component of X(t), where 1 ≤ i ≤ p and 1 ≤ j ≤ k. In particular, we consider predictable DFMs49

with a finite number S of lags, which are of the form50

X(t) =

S∑
s=0

Λ(s) f(t − s) + ε(t), 1 ≤ t ≤ T . (2)51
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