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a b s t r a c t 

It is a well-established fact that routing metrics cannot be optimized via shortest path algorithms un- 

less they are both monotone and isotonic. In particular, monotonicity guarantees the convergence of 

the shortest path procedure, while isotonicity guarantees convergence to the optimal path. This paper 

presents a class of routing metrics that are not isotonic, yet can be solved to exact optimality via short- 

est path (or iterative shortest path) procedures. In particular, we consider routing metrics of the form 

“distance + 1 /width ” and “distance / width ”, respectively, where the former is the default form of the com- 

posite metric of the interior gateway routing protocol (IGRP). To the best of our knowledge, for the first 

time we provide shortest-path-based algorithms that are guaranteed to minimize these metrics in spite 

of their non-isotonicity. This result implies that, contrary to common belief, the composite metric of the 

IGRP is in fact optimizable. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Routing in communication networks has been the subject of 

considerable interest for decades. The work of [1] and [2] intro- 

duced an algebraic theory of network routing. This work identi- 

fied the necessary and sufficient conditions for any routing met- 

ric to be optimizable using shortest path (or generalized short- 

est path) algorithms: monotonicity and isotonicity. In particular, 

monotonicity of the routing metric ensures that standard shortest 

path algorithms (i.e., Dijkstra or Bellman-Ford) will converge, and 

isotonicity of the routing metric ensures that the shortest path al- 

gorithms will converge to an optimal path. Note that monotonic- 

ity implies that the overall weight of a path does not improve 

when it is extended by a new link. Isotonicity, however, implies 

that the weight-relationship of two paths with the same source is 

preserved if both routes are extended by the same link. In partic- 

ular, let A and B be two paths originating from the same source, 

where A is shorter that B . If both paths are appended by the same 

link l , then isotonicity of the routing metric implies that the ex- 

tended path A ∪ l is also shorter than B ∪ l . For more details, refer 

to [2] . This algebraic theory of routing was also utilized in more 

recent studies, e.g., [3] , [4] and [5] . 

Let D ( L ) and W ( L ) denote the length (distance) and width of 

path L respectively. Note that D ( L ) is the sum of all link distances 

along L , and W ( L ) is the minimum (bottleneck) link width along 

L . We consider finding the paths that minimize the following two 
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composite metrics, respectively: 

Met 1 (L ) = D (L ) + 

1 

W (L ) 
, (1) 

and 

Met 2 (L ) = 

D (L ) 

W (L ) 
. (2) 

Note that the first metric ( Met 1 ) is the default form of the com- 

posite metric of the interior gateway routing protocol (IGRP) [6,7] . 

The second metric ( Met 2 ) is an alternative metric that attempts to 

achieve a tradeoff between length and width of the chosen path. 

The study in [2] noted that the IGRP metric ( Met 1 ) as given by 

(1) is monotone, but not isotonic. The following section will elab- 

orate more on this fact. This implies that standard shortest path 

procedures (i.e., Dijkstra or Bellman-Ford) will not converge to the 

optimal path if used to minimize Met 1 . In spite of this, the origi- 

nal IGRP was based on a distance-vector implementation, with the 

help of heuristics to prevent the formation of cycles [6,7] . Since 

the distance-vector protocol uses a distributed Bellman-Ford route 

selection algorithm, its worst-case complexity is O ( NM ), where N 

and M denote the number of nodes and links, respectively. The 

enhanced IGRP (EIGRP) [8] uses the same routing metric Met 1 as 

given by (1) . In fact, EIGRP is also based on a distance-vector im- 

plementation, but replaces the heuristics with the diffusing up- 

date algorithm (originally presented in [9] ) to avoid the formation 

of loops. It has been noted in [7] that the diffusing algorithm of 

[9] has been originally designed for a simple distance metric, and 

would behave unexpectedly in the case of composite metrics such 

as the IGRP metric Met 1 . In summary, although EIGRP is still one of 
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the primary routing protocols used by Cisco Systems, its distance- 

vector implementation does not guarantee convergence to the op- 

timal path due to the non-isotonicity of routing metric used. More- 

over, to the best of our knowledge, shortest-path-based algorithms 

that are guaranteed to minimize the well-known IGRP (and EIGRP) 

metric Met 1 exactly have not been reported. 

The alternative metric ( Met 2 ) is not as well-studied as the 

IGRP metric ( Met 1 ). Although the study in [10] focuses on mul- 

tipath routing, optimizing Met 2 appears in finding an initial flow 

for other, more involved algorithms. In particular, Nakibly et al. 

[10] reports that the path with maximum W ( L )/ D ( L ) can be found 

using dynamic programming at a running time of O ( N 

2 M 

3 log 2 ( N )), 

where N and M denote the number of nodes and links, respec- 

tively. Moreover, the studies in [11–13] addressed the problem of 

finding the path with maximum (bandwidth-normalized) end-to- 

end data rate in multihop wireless networks. These studies did not 

explicitly consider a routing metric that combines distance with 

width. However, the resulting routing metric can be regarded as 

a special case of Met 2 when time-division-multiplexing (TDM) is 

used among different wireless link transmissions. In short, these 

studies are more specific, and less general than our succinct ap- 

proach. 

Outside the context of isotonicity and the applicability of short- 

est path algorithms, studies that considered composite (or multi- 

objective) routing metrics do exist. For example, [14] and [15] com- 

bined several routing metrics using a multi-objective optimization 

approach, and proposed solutions based on meta-heuristic evolu- 

tionary algorithms. The studies in [16] and [17] also combined sev- 

eral routing metrics, and proposed solutions based on ant-colony 

optimization. Our present work, however, differs from this line 

of research in several aspects. In particular, these studies did not 

focus on the isotonicity property or the convergence of short- 

est path algorithms, but used general-purpose optimization meth- 

ods instead. In contrast, our work focuses on the development of 

shortest-path-based algorithms for the non-isotonic metrics of in- 

terest, as opposed to a general-purpose optimization approach. 

Given a network and a source-destination pair of nodes, this 

paper focuses on finding the path from source to destination such 

that the routing metric Met 1 (or Met 2 ) is minimized. Using the 

divide-and-conquer principle [18] from optimization theory, we di- 

vide the overall routing problem into separate sub-problems that 

can be solved via shortest path procedures. We also extend our ap- 

proach to the case where the distance of the path D ( L ) is replaced 

by its hop-count | L | in the metrics. In the latter case, we will show 

that all resulting sub-problems can be solved using a single run of 

the Bellman-Ford shortest path algorithm. In particular, the contri- 

bution of this paper can be summarized as follows. 

• To the best of our knowledge for the first time, we devise 

a provably optimal , shortest-path-based algorithm to solve the 

routing problem using the composite IGRP metric Met 1 . Our ap- 

proach is based on the divide-and-conquer principle, and itera- 

tively invoking a shortest path procedure. The algorithm run- 

ning time is O ( N 

2 M ), where N and M denote the number of 

nodes and links, respectively. We demonstrate that the same 

algorithm (with the same O ( N 

2 M ) complexity) can be applied 

to minimize Met 2 . This is a significant improvement over the 

O ( N 

2 M 

3 log 2 ( N )) reported in [10] . 

• In the special case where the distance of the path D ( L ) is re- 

placed by its hop-count | L | in Met 1 or Met 2 , we devise an im- 

proved algorithm based on a single run of the Bellman-Ford al- 

gorithm at a running time of only O ( NM ). 

The remainder of this paper is organized as follows. 

Section 2 provides a problem definition, and an overview of 

the monotonicity and isotonicity of the composite routing met- 

rics Met 1 and Met 2 . Section 3 presents the shortest-path-based 

algorithm for minimizing Met 1 (or Met 2 ), and establishes its 

guaranteed optimality theoretically. The improved shortest-path 

algorithm for the case where the metrics use the hop-count 

instead of the distance, and its optimality proof, are presented in 

Section 4 . Numerical results are presented in Section 5 . Finally, 

Section 6 concludes the paper. 

2. Problem definition 

A network is modeled as a graph G = (V, E) , where V represents 

the set of nodes (vertices) and E represents the set of links (edges). 

We let l ∈ E signify a link in the network. We also let N = | V | and 

M = | E| denote the number of nodes and links, respectively. Each 

link l ∈ E is associated by a distance d l and a width w l . In practice, 

the distance of a link may be its physical distance, the delay on the 

link, or any additive function that reflects the cost of using the link. 

The width of a link typically represents its bandwidth or available 

bandwidth. Therefore, for any given path L in the network, we de- 

fine its end-to-end distance D ( L ) and width W ( L ), respectively, as 

follows: 

D (L ) = 

∑ 

l∈ L 
d l , (3) 

and 

W (L ) = min 

l∈ L 
w l . (4) 

Given a source-destination s − d pair of nodes ( s, d ) ∈ V × V , we 

address the following two problems: 

min 

L ∈L sd 

Met 1 (L ) = D (L ) + 

1 

W (L ) 
, (5) 

and 

min 

L ∈L sd 

Met 2 (L ) = 

D (L ) 

W (L ) 
, (6) 

where L sd denotes the set of all paths joining s and d . 

In what follows, we show that both routing metrics Met 1 and 

Met 2 are monotone, but not isotonic. 

Observation 1. The routing metric Met 1 is monotone. 

Proof. If path L is appended by link l , monotonicity of Met 1 im- 

plies that Met 1 ( L ∪ l ) ≥ Met 1 ( L ). In other words, the overall metric 

does not improve if a path is appended by a link. It can be verified 

that 

Met 1 (L ∪ l) = D (L ∪ l) + 

1 

W (L ∪ l) 

= D (L ) + d l + 

1 

min { W (L ) , w l } 
≥ D (L ) + d l + 

1 

W (L ) 

≥ D (L ) + 

1 

W (L ) 

= Met 1 (L ) . (7) 

Note that the second equality comes from the fact that the dis- 

tance is an additive, while the width is a bottleneck quantity. The 

second inequality follows from the fact that link distances and 

widths are positive. This completes the proof. �

Observation 2. The routing metric Met 2 is monotone. 

Proof. The proof is almost identical to that of Observation 1, and 

is omitted. �

Now, we provide an argument that both routing metrics Met 1 
and Met 2 are not isotonic. 
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