
c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

Dynamic log file analysis: An unsupervised

cluster evolution approach for anomaly detection

�

Max Landauer

a , ∗, Markus Wurzenberger

a , Florian Skopik

a ,
Giuseppe Settanni a , Peter Filzmoser

b

a Austrian Institute of Technology, Austria
b Vienna University of Technology, Austria

a r t i c l e i n f o

Article history:

Received 5 June 2018

Revised 7 August 2018

Accepted 29 August 2018

Available online 4 September 2018

Keywords:

Log data

Cluster evolution

Anomaly detection

String clustering

Unsupervised learning

Incremental clustering

Time series analysis

a b s t r a c t

Technological advances and increased interconnectivity have led to a higher risk of previ-

ously unknown threats. Cyber Security therefore employs Intrusion Detection Systems that

continuously monitor log lines in order to protect systems from such attacks. Existing ap-

proaches use string metrics to group similar lines into clusters and detect dissimilar lines

as outliers. However, such methods only produce static views on the data and do not suffi-

ciently incorporate the dynamic nature of logs. Changes of the technological infrastructure

therefore frequently require cluster reformations. Moreover, such approaches are not suited

for detecting anomalies related to frequencies, periodic alterations and interdependencies

of log lines. We therefore propose a dynamic log file anomaly detection methodology that

incrementally groups log lines within time windows. Thereby, a novel clustering mechanism

establishes links between otherwise isolated collections of clusters. Cluster evolution tech-

niques analyze clusters from neighboring time windows and determine transitions such as

splits or merges. A self-learning algorithm then detects anomalies in the temporal behavior

of these evolving clusters by analyzing metrics derived from their developments. We apply

a prototype in an illustrative scenario consisting of a log file containing known anomalies.

We thereby investigate the influences of certain parameters on the detection ability and

the runtime. The evaluation of this scenario shows that 61.8% of the dynamic changes of

log line clusters are correctly identified, while the false alarm rate is only 0.7%. The abil-

ity of efficiently detecting these anomalies while self-adjusting to changes of the system

environment suggests the applicability of the introduced approach.

© 2018 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Nowadays, digital systems that exist in all kinds of forms and

scales are omnipresent. Despite many benefits that can be

� Massive extension of Landauer et al. (2018)
∗ Corresponding author.

E-mail addresses: max.landauer@ait.ac.at (M. Landauer), markus.wurzenberger@ait.ac.at (M. Wurzenberger), florian.skopik@ait.ac.at (F.
Skopik), giuseppe.settanni@ait.ac.at (G. Settanni), peter.filzmoser@tuwien.ac.at (P. Filzmoser).

drawn from such an interconnected world, the dangers en-
compassed by recent technological advancements must be
recognized. Larger and more complex networks generally en-
tail the emergence of threats and novel attack vectors. Not
just the amount of potential entry points becomes larger in a

https://doi.org/10.1016/j.cose.2018.08.009
0167-4048/© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.cose.2018.08.009
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2018.08.009&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:max.landauer@ait.ac.at
mailto:markus.Wurzenberger@ait.ac.at
mailto:florian.skopik@ait.ac.at
mailto:giuseppe.settanni@ait.ac.at
mailto:peter.filzmoser@tuwien.ac.at
https://doi.org/10.1016/j.cose.2018.08.009
http://creativecommons.org/licenses/by-nc-nd/4.0/

c o m p u t e r s & s e c u r i t y 7 9 (2 0 1 8) 9 4 – 1 1 6 95

growing network, there is also a substantial increase of the
attack surface when more complex technologies are present.
This allows attackers to infiltrate the system in more diverse
and previously unimaginable ways. In order to counteract
such intrusions, Cyber Security employs Intrusion Detection

Systems (IDS) that are able to differentiate between benign

and malicious system processes and raise alerts whenever a
prohibited action is executed. However, traditional IDS do so
by comparing the current state of the system with known sig-
natures. While the involved methods are usually very efficient,
they fail to detect previously unknown attacks due to the fact
that no corresponding entry exists in their ruleset. There is
therefore a need for more flexible methods that do not rely on

predefined rules derived from expert knowledge, but rather
detect suspicious events occurring in large-scale ICT systems
on their own.

IDS that perform such an unsupervised analysis are known

as Anomaly Detection Systems and are frequently used for
monitoring system logs. The advantage of log files is that they
keep track of every single event that is carried out, including
artifacts of attacks. An Anomaly Detection System that is able
to process the log lines at least at the same rate as they appear
is therefore able to detect attacks in real-time.

Due to the fact that logs are designed to be human-
readable, they often contain text messages and also give
information about parameters and other values related to the
currently running processes. There are uncountable different
ways how log files are structured in practice and the contents
of most real-world log files exhibit highly different features
as they depend on the type of application, configurations
defining what type of messages are logged (e.g., informative
messages, errors or debug output), the verbosity of the log
lines, what kind of components are placed in the system

and in which way they are writing their messages to the log
file. Moreover, logs from many different sources are often

assembled into single files or streams. For example, the syslog
protocol only imposes minimal restrictions regarding the log
contents when aggregating messages from different services.

This kind of content diversity apparent in many existing
applications renders an automated analysis difficult and thus
requires methods that provide a more flexible way of extract-
ing relevant data out of the logs.

Several existing approaches do so by employing unsuper-
vised or semi-supervised text clustering approaches that op-
erate independent from the structure of the log file at hand.
These methods group similar log lines into a collection of clus-
ters, i.e., a cluster map. However, the cluster maps resulting
from these algorithms usually only give a static view of the
data. In general, locating outliers in these maps or single lines
that contain significant words like “error” is not adequate for
a thorough analysis of the system and neither is the pres-
ence or absence of certain lines sufficient to indicate prob-
lems, but rather the dynamic relationships and correlations
between lines have to be considered (Xu et al., 2009).

Note that this kind of clustering is different to cluster-
ing log traces, i.e., ordered sequences of log lines, that is
frequently pursued in existing literature on process mining.
While the extraction of log traces requires some kind of pro-
cess ID that refers to the task that generated the log messages,
clustering individual log lines does not rely on any assump-

tions about the data. In this article, we therefore refer to static
cluster maps as a collection of individual log lines rather than

log sequences.
Another challenge with such static cluster maps is that

they cannot be used as permanent templates for a computer
system. This is due to the fact that any system generating log
lines is constantly subject to changes and therefore cluster
maps generated during separate time windows often turn out
to consist of highly different structures. It is therefore neces-
sary to incorporate dynamic features that span over multiple
cluster maps.

This task is known as cluster evolution analysis. Fig. 1
shows an example of three cluster maps generated during
three different time windows. In the first time window, the
cluster map consists only of a single cluster. This cluster con-
tains a set of log lines displayed as points and is defined by
a representative, i.e., a specific element marked by a star that
represents the contents of the cluster. In the second time win-
dow, two clusters exist, but only one of them is a descendant
of the cluster from the first time window. This relationship

between the clusters is marked by the arrow pointing from

the original to the resulting cluster. In the third time window,
three clusters exist, but two of them originate from a single
cluster, thereby forming a split.

Cluster evolution aims at an analytical and automatic iden-
tification of such transitions between clusters. However, ex-
isting cluster evolution techniques rely on the principle that
the same elements are observed and clustered over time. Log
lines on the other hand are non-recurring objects, i.e., a log
line occurs exactly at one single point in time and that same
line is never observed again. This means that it is not possi-
ble to simply match log lines with each other without previ-
ous work, such as identifying and omitting time stamps, IDs
and variable artifacts in the strings. We already mentioned

that despite the fact that clustering will by definition group

similar log lines into clusters, the structure and message con-
tent of lines within clusters do not necessarily have to be
homogeneous. Even more so, log lines within clusters from

different time windows may have structurally changed due
to system events or modifications, for example, software up-
dates that change the syntaxes of the logged messages. While
fuzzy string matching algorithms exist that alleviate these is-
sues, their extensive computational complexity in combina-
tion with the immense amount of log lines distributed in nu-
merous clusters makes it non-trivial to determine the transi-
tions between clusters.

Anomaly detection always relies on some kind of metric
that determines whether a specific instance such as a log line,
group of log lines or point in time is anomalous or not. Pre-
defined limits are frequently used to trigger alarms for these
metrics, however are not always an appropriate solution in an

unsupervised setting. This is due to the fact that different sys-
tems usually show highly different behavior and also the be-
havior of a single system changes over time. A self-learning
procedure should therefore be able to dynamically adjust to
any environment it is placed into and adapt the limits for trig-
gering alarms on its own.

Finally, an anomaly detection system that deals with all
the previously mentioned issues must also exhibit a rea-
sonable computational complexity regarding runtime and

Download English Version:

https://daneshyari.com/en/article/10139369

Download Persian Version:

https://daneshyari.com/article/10139369

Daneshyari.com

https://daneshyari.com/en/article/10139369
https://daneshyari.com/article/10139369
https://daneshyari.com

