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a b s t r a c t

As wide-field surveys yield ever more precise measurements, cosmology has entered a phase of high
precision requiring highly accurate and fast theoretical predictions. At the heart of most cosmological
model predictions is a numerical solution of the Einstein–Boltzmann equations governing the evolution
of linear perturbations in theUniverse.We presentPyCosmo, a newPython-based framework to solve this
set of equations using a special purpose solver based on symbolic manipulations, automatic generation
of C++ code and sparsity optimisation. The code uses a consistency relation of the field equations to
adapt the time step and does not rely on physical approximations for speed-up. After reviewing the
system of first-order linear homogeneous differential equations to be solved, we describe the numerical
scheme implemented in PyCosmo. We then compare the predictions and performance of the code for
the computation of the transfer functions of cosmological perturbations and compare it to existing
cosmological Boltzmann codes. While PyCosmo does not yet have all the features of other codes,
our approach is complementary to other fast cosmological Boltzmann solvers and can be used as an
independent test of their numerical solutions. The symbolic representation of the Einstein–Boltzmann
equation system in PyCosmo provides a convenient interface for implementing extended cosmological
models. We also discuss how the PyCosmo framework can also be used as a general framework to
compute cosmological quantities as well as observables for both interactive and high-performance batch
jobs applications. Information about the PyCosmo package and future code releases are available at
http://www.cosmology.ethz.ch/research/software-lab.html.

© 2018 Published by Elsevier B.V.

1. Introduction

In order to address the fundamental questions raised by the
nature of Dark Matter, Dark Energy and large scale gravity, a
number of cosmological experiments are currently underway or
in the planning (e.g. DES,1 DESI,2 LSST,3 Euclid,4 WFIRST5). These
experiments aim to achieve the high precision required to tackle
these questions and will thus require highly accurate predictions
of observables for a wide set of cosmological models. At the heart
of most cosmological model prediction is a numerical solution of
the Einstein–Boltzmann equations (see Ma and Bertschinger, 1995
and reference therein) governing the linear evolution of perturba-
tions in the Universe. Several codes have thus been developed to
produce fast and accurate solutions to this set of first-order
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1 http://www.darkenergysurvey.org.
2 http://desi.lbl.gov.
3 http://www.lsst.org.
4 http://sci.esa.int/euclid/.
5 http://wfirst.gsfc.nasa.gov.

linear homogeneous differential equations, such as COSMICS
(Bertschinger, 1995a), CMBFAST (Seljak and Zaldarriaga, 1996),
CMBEASY (Doran, 2005), CAMB (Lewis et al., 2000), CLASS (Les-
gourgues, 2011a; Blas et al., 2011; Lesgourgues, 2011b), with only
the latter two being currently maintained. The predictions of these
codes are then compared to measurements from cosmological
surveys to derive constrains on the parameters of the cosmological
model usingMonte-CarloMarkov Chain techniques (e.g. Lewis and
Bridle, 2002; Akeret et al., 2012). Given the central importance of
Boltzmann codes to our current constraints on the cosmological
model and the well known numerical difficulty to solve this set
of equations (see e.g. Nadkarni-Ghosh and Refregier, 2016 for a
mathematical analysis, and references therein), it is important
to explore different numerical schemes for the solutions of the
differential equations.

In this paper, we present PyCosmo, a new Python-based frame-
work to solve the Einstein–Boltzmann equations using a spe-
cial purpose solver based on symbolic manipulations, automatic
generation of C++ code and sparsity optimisation. The code uses
a consistency relation of the field equations to adapt the time
step and does not rely on physical approximations for speed-
up. We study the accuracy and performance of PyCosmo for the
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computation of the transfer functions of cosmological perturba-
tions in the newtonian gauge in a flat universe, and compare
it to existing codes. Our approach is complementary to existing
cosmological Boltzmann solvers that are based on more general
differential equation solvers and physical approximations, and
can be used as an independent test of their numerical solutions.
We discuss how the symbolic representation of the Einstein–
Boltzmann equation system in PyCosmo provides a convenient
interface for theorists to rapidly implement new cosmological
models. We also discuss how the PyCosmo framework can also be
used as a general framework to compute cosmological quantities as
well as observables for both interactive and for high-performance
batch jobs applications, drawing upon the earlier IDL cosmological
package ICosmo (Refregier et al., 2011).

The paper is organised as follows. In Section 2, we describe the
set of Einstein–Boltzmann equations describing the linear growth
of cosmological structures. Section 3 describes our implementation
scheme for deriving numerical solutions to this set of equations.
In Section 4 we study the performance of PyCosmo in terms of
numerical precision and speed and compare it to existing codes.
Our conclusions are described in Section 5.

2. Einstein–Boltzmann equations

2.1. Linear perturbations

After solving the evolution of the scale factor a and the Hubble
parameter H using the Friedmann equation (see e.g. Dodelson,
2003), we can consider the linear evolution of scalar perturbations.
For this purpose, we choose the newtonian gauge in a flat ΛCDM
cosmology. The evolution of perturbations are thus governed by
the Einstein–Boltzmann equations which, in this case and to linear
order, are given by (Ma and Bertschinger, 1995 with the conven-
tions of Dodelson, 2003)
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where dot denotes derivatives with respect to conformal time η,
δ (δb) and u (ub) are the density and velocity perturbations for the

dark matter (baryons), Θl and ΘPl are the photon temperature and
polarisation multipole moments,Nl are the multipole moments of
the (massless) neutrino temperature, and Π = Θ2 + ΘP0 + ΘP2.
The baryon-to-photon ratio is given by R = 3ρb/(4ργ ), τ is the
Thomson scattering optical depth and cs is the baryon sound speed.
The subscripts r and m refer to the density-weighted sum of all
radiation and matter components, and ρr and ρm are the mean
density in each of these components.

The gravitational potential fields Φ and Ψ describe scalar per-
turbations to themetric ds2 = −(1+2Ψ )dt2 +a2(1+2Φ)dx⃗2, and
are related by the longitudinal traceless space–space parts of the
Einstein equation by means of the algebraic equation

k2(Φ + Ψ ) = −32πGa2ρrΘr2. (14)

Note that an alternative to the time–time Einstein equation
(Eq. (13)) is its time–space component given by
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k
[ρmum + 4ρrΘr1] . (15)

2.2. Initial conditions

We assume initial conditions arising from inflation for which
the primordial power spectrum of the potential Φ follows
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where δH is a normalisation parameter,D(a) is the late time growth
factor (normalised to D(a) = a in the matter era), n is the scalar
spectral index, andH0 is the present value of theHubble parameter.
For adiabatic initial conditions, the other fields at early times are
given by Ma and Bertschinger (1995)
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where Rν = (ρν +Pν)/(ρ +P) = Ων/
( 3
4Ωma + Ωr

)
is the neutrino

ratio, and all the other perturbation fields are set to 0 at the initial
time.

2.3. Practicalities

In practice, the hierarchy of moments for the photon, photon
polarisation, and neutrino moments can be truncated to a maxi-
mum multipole lmax by replacing Eqs. (8)–(9) for Θ̇l at l = lmax
with (Ma and Bertschinger, 1995)

Θ̇l ≃ kΘl−1 −
l + 1

η
Θl + τ̇Θl, (18)

and similarly for the photon polarisation moments ΘPl and for the
neutrinomomentsNl, but without the Thomson scattering term in
the latter case.

The optical depth τ and the sound speed cs canbepre-computed
using public recombination codes such as RECFAST (Seager et al.,
1999, 2000), RECFAST++ (Seager et al., 1999; Chluba and Sunyaev,
2010; Chluba et al., 2010; Rubiño-Martín et al., 2010; Chluba and
Thomas, 2011) or COSMOSPEC (Chluba and Ali-Haïmoud, 2016). In
PyCosmo, we have implemented an interface to RECFAST++, as
well as the possibility of external input recombination variables
for comparisons with other Boltzmann codes.
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