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State-of-the-art computer codes for simulating real physical systems are often characterized 
by vast number of input parameters. Performing uncertainty quantification (UQ) tasks 
with Monte Carlo (MC) methods is almost always infeasible because of the need to 
perform hundreds of thousands or even millions of forward model evaluations in order 
to obtain convergent statistics. One, thus, tries to construct a cheap-to-evaluate surrogate 
model to replace the forward model solver. For systems with large numbers of input 
parameters, one has to address the curse of dimensionality through suitable dimensionality 
reduction techniques. A popular class of dimensionality reduction methods are those 
that attempt to recover a low-dimensional representation of the high-dimensional feature 
space. However, such methods often tend to overestimate the intrinsic dimensionality of 
the input feature space. In this work, we demonstrate the use of deep neural networks 
(DNN) to construct surrogate models for numerical simulators. We parameterize the 
structure of the DNN in a manner that lends the DNN surrogate the interpretation of 
recovering a low-dimensional nonlinear manifold. The model response is a parameterized 
nonlinear function of the low-dimensional projections of the input. We think of this low-
dimensional manifold as a nonlinear generalization of the notion of the active subspace. 
Our approach is demonstrated with a problem on uncertainty propagation in a stochastic 
elliptic partial differential equation (SPDE) with uncertain diffusion coefficient. We deviate 
from traditional formulations of the SPDE problem by lifting the assumption of fixed 
lengthscales of the uncertain diffusion field. Instead we attempt to solve a more challenging 
problem of learning a map between an arbitrary snapshot of the diffusion field and the 
response.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

With the tremendous increase in the availability of computational resources, computer codes which simulate physical 
systems have become highly sophisticated. Today, state-of-the-art numerical simulators are parameterized by a very large 
number of quantities which are used to describe material properties, initial conditions, boundary conditions, constitutive 
laws, etc. It is often the case, that many of the inputs to a numerical simulator are not known exactly. This raises the 
question – how defensible are the predictions from such numerical simulators? How do we objectively assess the effects 
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of the uncertainties in model inputs on the quality of the model predictions? Answering such questions are at the core of 
the field of uncertainty quantification (UQ) [1,2]. Specifically, the task of rigorously quantifying the effect of input parameter 
uncertainty on the model outputs is known as the forward UQ or uncertainty propagation (UP) problem.

The simplest method for tackling the UP problem is the Monte Carlo (MC) method [3–5]. The basic idea of MC is that one 
can compute empirical estimates of the statistics of some quantity of interest (QoI) by sampling averages. The MC method is 
guaranteed to converge in the limit of infinite samples. MC methods, and its advanced variants, are routinely applied to UQ 
tasks such as UP [6], inverse problems [7,8], model calibration [9] and stochastic optimization [10]. The computational time 
to convergence of MC methods is independent of the number of the stochastic dimensions. However, the number of samples 
needed by MC methods, to obtain convergent statistics is large, typically being of the order of hundreds of thousands or 
millions. This makes MC methods unsuitable for UQ tasks involving expensive computer codes.

We typically deal with expensive computer codes, by building a cheap-to-evaluate surrogate of the response surface. To 
do this, a set of locations in the uncertain parameter-space are carefully selected and the forward model is evaluated at 
these locations. This produces a set of independent observations of the model response. The total number of such simu-
lations to be performed is determined by one’s computational budget and desired accuracy. Because the surrogate model 
can be queried very cheaply, one can use it as a replacement of the original simulator and perform UQ tasks using MC 
techniques. Popular choices for surrogate models in the literature include, Gaussian processes [11–15], polynomial chaos 
expansions [16–19], radial basis functions [20] and relevance vector machines [21]. Despite their success, these methods 
become intractable for problems in which the number of input stochastic dimensions is large.

In order to construct a surrogate response surface for a multivariate function with a large number of uncertain param-
eters, one has to overcome the phenomenon known as the curse of dimensionality, a term coined by the mathematician 
Richard Bellman [22] in the context of dynamic programming. In the context of statistical sampling and machine learning 
the implication of the curse of dimensionality is that to sufficiently explore a high dimensional space, one must visit an 
exponentially large number of points in that space. As a concrete example, suppose the task of approximating a surrogate 
model for a univariate function can be done by visiting 10 locations in the input space and evaluating the forward model at 
those input locations. For a bivariate function of similar lengthscale, one would need to visit roughly 10 × 10 = 100 points 
in the input space to maintain a similar level of accuracy of the constructed surrogate. Generalizing, a d-variate function re-
quires visiting O(10d) locations in the input space and evaluating the forward solver at those locations. Even if the forward 
model is inexpensive to evaluate, attempting to naively construct surrogate response surfaces for high dimensional functions 
is a futile task.

Suitable dimensionality reduction techniques have to be employed in order to deal with the curse of dimensionality. The 
simplest way of doing so is to rank the input dimensions in order of their “importance”, and rejecting those input dimen-
sions which contribute the least to the outcome of the numerical simulation. Techniques that adopt this approach include 
sensitivity analysis [23] and automatic relevance determination (ARD) [24]. These methods, while effective for problems 
with a small number of uncorrelated input dimensions, are not useful for problems involving functional uncertainties, such 
as stochastic partial differential equations (SPDE).

Many common dimensionality reduction techniques follow a simple idea: project the high dimensional inputs, onto a 
low-dimensional subspace which captures most of the information contained in the original input. In the UQ community, 
the most common dimensionality reduction method used is the Karhunen–Loève expansion (KLE) [25,26]. The KLE involves 
computing an eigendecomposition of the covariance function associated with the uncertain functional input. The eigenfunc-
tions represent a set of orthogonal basis functions and the decay of the eigenvalues determine the set of basis functions to 
be retained for the purpose of constructing a low dimensional approximation of the high dimensional random field. In the 
machine learning (ML) community, this is more popularly known as the principal component analysis (PCA) [27,28], whose 
goal is to produce a low-rank approximation of the empirical centered covariance matrix of the available input data. The 
result of such a computation is an orthogonal matrix, which maps a point in the high dimensional input space to a point on 
a low dimensional manifold, such that there is minimal reconstruction error. The obvious drawback of PCA is the fact that 
one is constrained to discover only linear projections. Furthermore, PCA is an unsupervised technique, which means that it 
only looks at samples of the input and does not consider information contained in the model outputs. As a result, PCA tends 
to overestimate the intrinsic dimensionality of the system. Thus, inspite of a reduction in the total number of input dimen-
sions, the reduced representation remains very high dimensional and thereby unsuitable for surrogate model construction. 
One can alleviate the linearity constraint by using the kernel PCA (KPCA) [29,30], which uses the kernel trick to discover 
nonlinear manifolds. Nevertheless, KPCA is also an unsupervised technique that ignores model output information.

A recent advancement in dimensionality reduction is active subspaces (AS) [31–36]. An active subspace is a low dimen-
sional linear manifold embedded in the input space which captures most of the model output variation. It does so by 
recovering an orthogonal projection matrix obtained through an eigendecomposition of an empirical covariance matrix of 
the model output gradients. In the absence of model output gradients (a scenario typical in engineering applications), one 
can estimate the projection matrix by posing it as a hyperparameter in a Gaussian process regression model and learning 
it from the available data through a maximum likelihood (MLE) computation [12]. While the upshot of the AS method is 
that one utilizes the information contained in the model outputs along with the model inputs, one is still constrained to 
discover only linear manifolds of the data.

In this work, we propose a systematic approach for constructing surrogate models using deep neural networks (DNNs) 
[37–40]. Neural networks (NNs) (or artificial neural networks (ANNs)) are a class of function approximators that have shot 
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