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We describe a compatible finite element discretisation for the shallow water equations 
on the rotating sphere, concentrating on integrating consistent upwind stabilisation into 
the framework. Although the prognostic variables are velocity and layer depth, the 
discretisation has a diagnostic potential vorticity that satisfies a stable upwinded advection 
equation through a Taylor–Galerkin scheme; this provides a mechanism for dissipating 
enstrophy at the gridscale whilst retaining optimal order consistency. We also use upwind 
discontinuous Galerkin schemes for the transport of layer depth. These transport schemes 
are incorporated into a semi-implicit formulation that is facilitated by a hybridisation 
method for solving the resulting mixed Helmholtz equation. We demonstrate that our 
discretisation achieves the expected second order convergence and provide results from 
some standard rotating sphere test problems.

© 2018 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The development of new numerical discretisations based on finite element methods is being driven by the need for more 
flexibility in mesh geometry. The scalability bottleneck arising from the latitude–longitude grid means that weather and 
climate model developers are searching for numerical discretisations that are stable and accurate on pseudo-uniform grids 
without sacrificing properties of conservation, balance and wave propagation that are important for accurate atmosphere 
modelling on the scales relevant to weather and climate [31]. There is also ongoing interest in adaptively refined meshes 
as a way of seamlessly coupling global scale and local scale atmosphere simulations, as well as dynamic adaptivity or even 
moving meshes; using these meshes requires numerical methods that can remain stable and accurate on multiscale meshes. 
Further, there is an interest in using higher-order spaces to try to offset the inhomogeneity in the error due to using grids 
that break rotational symmetry.

Compatible finite element methods are a form of mixed finite element methods (meaning that different finite element 
spaces are used for different fields) that allow the exact representation of the standard vector calculus identities div-curl=0 
and curl-grad=0. This necessitates the use of H(div) finite element spaces for velocity, such as Raviart–Thomas and Brezzi–
Douglas–Marini, and discontinuous finite element spaces for pressure (stable pairing of velocity and pressure space relies 
on the existence of bounded commuting projections from continuous to discrete spaces, as detailed in Boffi et al. [9], for 
example). The main reason for choosing compatible finite element spaces is that they have a discrete Helmholtz decomposi-
tion of the velocity space; this means that there is a clean separation between divergence-free and rotational velocity fields. 
Cotter and Shipton [11] used this decomposition to demonstrate that compatible finite element discretisations for the linear 
shallow water equations on arbitrary grids satisfy the basic conservation, balance and wave propagation properties listed 
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in Staniforth and Thuburn [31]. In particular, it was shown that the discretisation has a geostrophic balancing pressure for 
every velocity field in the divergence-free subspace of the H(div) finite element space. A survey of the stability and approx-
imation properties of compatible finite element spaces is provided in Natale et al. [25], including a proof of the absence of 
spurious inertial oscillations.

The challenge of building atmosphere models using compatible finite elements is that there is no freedom to select 
finite element spaces in order to ensure good representation of the nonlinear equations (such as conservation, or accurate 
advection, for example), because the choice has already been made to satisfy linear requirements. In the case of the rotating 
shallow water equations, the use of discontinuous finite element spaces for the layer depth field encourages us to use 
upwind discontinuous Galerkin methods to solve the continuity equation describing layer depth transport.

The nonlinearity in the momentum/velocity equation is more challenging. In McRae and Cotter [24], the energy-
enstrophy conserving formulation of Arakawa and Lamb [2] was extended to compatible finite element methods. This 
extension is closely related to C-grid methods for the shallow water equations on more general meshes in Ringler 
et al. [28], Thuburn and Cotter [32]. Following these approaches, the compatible finite element formulation, which has 
velocity and height as prognostic variables, has a diagnostic potential vorticity that satisfies a conservation equation that is 
implied by the prognostic dynamics for velocity and height. A finite element exterior calculus structure in this formulation 
was exposed in Cotter and Thuburn [12], which also provided an alternative formulation based around low-order finite 
element methods on dual grids. In Thuburn and Cotter [34], the close relationship of the dual grid formulation to finite 
volume methods was exploited to obtain a stable discretisation of the nonlinear shallow water equations on the sphere 
where the finite element formulation of the wave dynamics was coupled with high-order finite volume methods for the 
layer depth and prognostic potential vorticity fields. The essential idea is to select a particular stable accurate finite volume 
scheme for the diagnostic potential vorticity, and to then find the update for the prognostic velocity which implies it. In 
this paper we address the issue of extending this idea to higher-order finite element spaces, for which there is no analogue 
of the dual grid spaces. This means that we must return to the formulation of McRae and Cotter [24], where the potential 
vorticity is stored in a continuous finite element space. We then seek stable, accurate higher-order discretisations of the 
potential vorticity equation using continuous finite element methods that make it possible to find the corresponding update 
for prognostic velocity. It turns out that this is indeed possible for advection methods from the SUPG/Taylor–Galerkin family 
of methods.

Finally, we show how these discretisations can be embedded within a semi-implicit time-integration scheme. We again 
follow the formulation in Thuburn and Cotter [34], in which advection terms are obtained from explicit time integration 
methods applied using the (iterative) velocity at time level n + 1/2. The linear system solved during each nonlinear iteration 
for the corrections to the field values also requires attention. The standard approach of eliminating velocity to solve a 
Helmholtz problem for the correction to the layer depth is problematic because the inverse velocity mass matrix is dense. 
We instead use a hybridised formulation where one solves for the Lagrange multipliers that enforce normal continuity of 
the velocity field [9, for example].

In section 2 we describe the shallow water model, including the spatial and temporal discretisation; we present finite 
element spaces that satisfy the properties outlined above and provide details of how to construct such spaces on the sphere 
and describe advection schemes for both discontinuous and continuous fields as required. In section 3 we present the results 
of applying our scheme to some of the standard set of test cases for simulation of the rotating shallow water equations on 
the sphere as described in Williamson et al. [36] and Galewsky et al. [15]. Section 4 provides a summary and brief outlook.

2. The shallow water model

2.1. Shallow water equations

We begin with the vector invariant form of the nonlinear shallow water equations on a two dimensional surface �
embedded in three dimensions,

ut + (ζ + f )u⊥ + ∇
(

g(D + b) + 1

2
|u|2

)
= 0, (1)

Dt + ∇ · (uD) = 0, (2)

where u is the horizontal velocity, D is the layer depth, b is the height of the lower boundary, g is the gravitational 
acceleration, f is the Coriolis parameter and ζ = ∇⊥ · u := (k × ∇) · u is the vorticity, u⊥ = k × u, k is the normal to the 
surface �, and where the ∇ and ∇· operators are defined intrinsically on the surface. These equations have the important 
property that the shallow water potential vorticity (PV)

q = ζ + f

D
(3)

satisfies a local conservation law,

∂

∂t
(Dq) + ∇ · (uqD) = 0. (4)
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