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A B S T R A C T

Hyperspectral image (HSI) has been used for a wide range of applications including forestry, urban planning, and
precision agriculture. In recent years, machine learning based algorithms, such as support vector machines,
decision trees, ensemble learning, and their variations have shown promising results in HSI analysis. Such
methodologies, nevertheless, can lead to insufficient information abstraction in interpreting hyperspectral pixels.
In this paper, we propose a novel neural network based classification algorithm, named Progressively Expanded
Neural Network (PEN Net), that can effectively interpret hyperspectral pixels in nonlinear feature spaces and
then determine their categories. Furthermore, a spectral-spatial HSI classification framework is also introduced
to test the generality and robustness of the PEN Net. Experimental results on four standard hyperspectral datasets
illustrate that: (1) PEN Net classifier yields better accuracy and competitive processing speed in HSI classification
tasks compared to the state-of-the-art methods; (2) Multi-hidden layer based PEN Net generally provides better
performance than single hidden layer one; (3) Combination of spectral and spatial features in the PEN Net
classifier can significantly improve the classification accuracy by 6–15% compared to the spectral only based HSI
classification. This study implies that the proposed neural network architecture opens a new window for future
research and the potential for remote sensing image analysis.

1. Introduction

Rapid advances in sensor technology, field robotics, unmanned
aerial systems, and computing power have facilitated exponential
growth in Remote Sensing (RS) applications. Meanwhile, processing
complex, multiscale, and high-dimensional data such as hyperspectral
data, has become increasingly difficult for RS community. There exist
both numerous opportunities and challenges with broader usage of
automated image analytic tools that translate the abundant spectral and
spatial data to useful information for decision-making.

Hyperspectral remote sensors collect image data in hundreds of
narrow and adjacent spectral bands. The different spectral signatures
associated with specific materials being imaged assist in automatic
target detection and classification since objects vary uniquely from the
natural background in absorbing and reflecting radiation at different
wavelengths. In most cases, the targets can be differentiated and
identified based on their spectral signature, which provides many
practical applications in life science, surveillance, agriculture, forestry,

and natural resources management. However, considerable spectral
variability and subpixel targets make hyperspectral image (HSI) pro-
cessing challenging (Manolakis and Shaw, 2002).

The objective of HSI classification is to assign a hyperspectral pixel
into an object category that it belongs to, which also termed as thematic
mapping. To perform the classification task, spectral libraries or
training data and ground truth information are generally required,
unless to perform unsupervised image classification. Two major chal-
lenges in HSI classification can be summarized into two aspects: (1) The
sparseness of the target class implies that insufficient availability of the
training data; (2) considerable intraclass variability and interclass si-
milarity introduce difficulty in pattern differentiation. To address these
challenges, many pixel-wise machine learning methods have been de-
veloped, such as maximum likelihood method (Richards and Richards,
1999), Bayesian estimation models (Landgrebe, 2005), Support Vector
Machine (SVM) (Cortes and Vapnik, 1995; Gualtieri and Cromp, 1999),
decision trees (Goel et al., 2003), Neural Networks (NN) (Subramanian
et al., 1997; Yang, 1999; Hernández-Espinosa et al., 2004), genetic
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algorithms (Vaiphasa, 2003), and kernel-based techniques (Camps-
Valls and Bruzzone, 2005). Although these methods have been widely
examined and extended for HSI analysis, there still exist challenges and
scopes to effectively and efficiently process HSI due to ever-increasing
data complexity and volume.

Recently, there has been a growing interest on a biological inspired
NN for RS data analysis (Pal et al., 2013; Samat et al., 2014; Yue et al.,
2015; Chen et al., 2016; Lv et al., 2016). Particularly, Deep Learning
(DL) models, which are capable of learning the discriminative features
from input data in hierarchical fashion instead of handcrafting features,
have been introduced into the geoscience and RS community with the
rapid surge of interest in this topic. Three fundamental DL architectures
are Deep Belief Network (DBN) (Hinton et al., 2006), Stacked Auto-
Encoder (SAE) (Bengio et al., 2007) and Convolutional Neural Network
(CNN) (LeCun et al., 1998). Some representative applications of these
models for RS data analysis include image preprocessing (e.g., pan-
sharpening) (Huang et al., 2015), target recognition (Chen et al.,
2014b), RS image classification (Romero et al., 2016; Hu et al., 2015a)
as well as segmentation (Albalooshi et al., 2018). Among these appli-
cations, HSI classification using DL has become one of the most active
research fields in recent years. Chen et al. (2014c) applied SAE to ex-
tract hierarchical features from hyperspectral data in the spectral and
spatial domain, while Tao et al. (2015) employed stacked sparse au-
toencoder for spectral-spatial feature representation and showed its
discriminative power for HSI classification. Similarly, the effectiveness
of DBN has also been explored for HSI data analysis and the results
indicated superior performance of DBN compared to SVM. Although
DBN and SAE are capable of extracting robust features and generally
achieve better accuracy than traditional machine learning classifiers,
they cannot efficiently extract contextual spatial information owing to
their inherent network structures (Lee and Kwon, 2017). In contrast,
CNN can effectively extract spatial and spectral features with less
amount of parameters, thus it has been a more preferable deep model in
the current trend of HSI analysis. Hu et al. (2015b) formulated a one-
dimensional (1D) CNN structure for pixel-wise HSI classification, and a
better performance was achieved compared to SVM and a two-layer
neural network. Li et al. (2017) introduced an improved 1D-CNN model
for HSI by applying CNN on pixel-pairs to augment the number of
training samples and achieved the state-of-the-art accuracy. Although
these CNN models yielded higher accuracy than other types of popular
classifiers such as SVM, a considerable amount of training time and
sufficient data requirement limit their performance.

Another popular biologically inspired NN, named Extreme Learning
Machine (ELM) (Huang et al., 2006), has attracted more and more at-
tention of the community in diverse research fields (Maimaitijiang
et al., 2017; Sidike et al., 2017; Peng et al., 2013) due to its higher
regularization performance at a much faster training speed over the
state-of-the-art NNs. Pal et al. (2013) proposed a new kernel based ELM
algorithm which provided better classification accuracy than the radial
basis kernel function based SVM and ELM methods with notable lower
computational cost. Moreno et al. (2014) applied ELM and Optimally
Pruned ELM (OP-ELM) for soybean variety classification in hyper-
spectral images, and showed that the OP-ELM yielded the best and more
stable results than the previously reported accuracy when using a single
spectral band. Samat et al. (2014) introduced an ensemble ELM, which
combines the Bagging-based and AdaBoost-based ELMs, for HSI clas-
sification, and yielded better accuracy than ELM and SVM. However,
the drawbacks of ELMs are that (1) it typically requires a large number
of neurons to reach good accuracy which affects its computational
merit, and (2) their applications are limited on the relatively easy da-
tabases compared to DL methods, thus the combination of ELM with DL
or other innovations on its basic principles will be needed (Tissera and
McDonnell, 2016). In this work, we introduce a nonlinear function
expansion scheme into multi-hidden layer model in our proposed NN
which alleviates the abovementioned limitations of ELMs.

There are two types of information can be utilized for HSI

classification: spectral signatures and spatial content. Recent advances
in spatial resolution enhancement of HSI attracts researchers’ interests
in exploiting spatial information. Unlike the classic HSI classification
methods which only consider the spectral signature of every pixel, the
spatial-feature based approaches represent each pixel by extracting
contextual information of that pixel in every spectral band. A study by
Camps-Valls et al. (2006), a family of composite kernels which in-
tegrates spatial and spectral information is introduced. This method
formulates a set of kernel-based classifiers by considering spectral,
spatial, and local cross-information in HSI. Pesaresi and Benediktsson
(2001) investigated Morphological Profile (MP), which utilizes mor-
phological operation to generate spatial structural features, for HSI
classification. Due to its successful performance, the improved versions
of MP, such as Extended MP (EMP) (Benediktsson et al., 2005) and
Extended multi-Attribute MP (EAMP) (Dalla Mura et al., 2010), were
developed. For noise-robust HSI classification, Chen et al. (2014a)
employed a multi-hypothesis prediction model to incorporate spatial
features and reconstruct HSI. Li et al. (2012) proposed to include spatial
information in HSI classification using a multilevel logistic Markov-
Gibbs random field prior. Kang et al. (2014) effectively utilized edge-
preserving filtering as a probability optimization process to improve the
classification output, whereas Chen et al. (2015a) extracted edge fea-
tures by computing spatial and rotational auto-correlations of local
image gradients.

Texture information is another useful spatial feature that can aid in
HSI classification. Markov Random Fields (MRFs) can be used to extract
texture features since they measure spatial relationship between the
central pixels and its neighboring pixels, which have been successful
applied in HSI classification (Eches et al., 2013; Tarabalka et al., 2010).
Gabor features as a widely used texture descriptor have been explored
for HSI classification (Huo and Tang, 2011; Bau et al., 2010). For in-
stance, Huo and Tang (2011) computed a two-dimensional Gabor fea-
tures in a principal component analysis projected subspace to obtain
texture features, while a three-dimensional Gabor filter bank was suc-
cessfully applied to HSI to capture texture features from specific or-
ientation and scale (Bau et al., 2010). Recently, Local Binary Pattern
(LBP) (Ojala et al., 2002) has shown surprisingly good performance in
HSI classification (Li et al., 2015a). Specifically, the LBP coded image is
first generated for each band in the input HSI, then the LBP histogram
for each pixel of interest is computed with its corresponding neigh-
borhood region. Recently, a new deviation of LBP, named Volumetric
Directional Pattern (VDP) Essa et al. (2017) extracts texture features
from the directional magnitude component of three consecutive bands
in HSI, was proposed and demonstrated its promising classification
accuracy among the other competitors. Although LBP and VDP sig-
nificantly contribute HSI classification accuracy, neglect the texture
features from the local sign and local magnitude components at various
scales. In contrast, a multiscale Completed LBP (CLBP) (Guo et al.,
2010) is capable of extracting multi-level textural and structural fea-
tures from images and it can outperform LBP and VDP, as well as the
state-of-the-art spatial features in HSI classification task (Sidike et al.,
2016, 2018).

In terms of DL frameworks, the exploitation of spatial information
has also been found to be substantially effective for HSI classification.
Yue et al. (2015) introduced a 2D-CNN architecture where spatial
features were incorporated during the classification framework. Lee
and Kwon (2017) explored local contextual interactions in HSI through
a multi-scale convolutional filter bank which was used as the initial
layer of subsequent CNN pipeline. Considering high-dimensionality of
HSI data, Makantasis et al. (2015) presented a randomized principal
component analysis approach to reduce spectral dimension of HSI while
a CNN model was used to encode spectral and spatial information. Si-
milarly, a balanced local discriminant embedding algorithm was pro-
posed to extract low-dimensionality spectral features and then a 2D-
CNN model was used to generate high-level spatial features. One of the
major drawbacks of 2D-CNN approaches is that they may not fully
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