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A B S T R A C T

This paper investigates the influence of frequency-dependent soil conductivity and permittivity on narrowband
and broadband power line communication (PLC) channel modeling using transmission line theory. For nar-
rowband PLC channels, the variation of the transfer function H(f) of a single overhead wire over a finitely
conducting ground due to frequency-dependent soil parameters is minimal for low-resistivity soils, but more
relevant for high-resistivity soils in the upper frequency range. For broadband PLC channels, H(f) strongly de-
pends on the soil model for frequencies below 10 MHz or so, but is relatively insensitive to this parameter at
higher frequencies. The average channel attenuation is more affected by soil model and soil parameters than the
achievable data rate. Also, the voltage definition assumed in the derivation of the per-unit-length parameters of
the line has little influence on the results. A comparison between different formulations traditionally used in PLC
channel modeling indicates that the admittance associated with a finitely conducting ground should not be
neglected in the modeling of broadband PLC channels.

1. Introduction

With the advent of the concept of smart grids and smart cities, in-
terest in power line communication (PLC) has grown in applications
such as remote load control, remote metering, and internet of things
[1–3]. Along with other technologies, PLC is one of the solutions that
can be exploited in a cooperative scenario that is expected to provide
greater flexibility, reliability and coverage of communication over
electric power grids [3].

One of the possibilities of modeling a PLC channel consists in the so-
called bottom-up approach, in which the channel model is obtained
from the application of transmission line theory [4–12]. For accurately
determining signal attenuation levels and achievable data rates in a PLC
channel using the bottom-up approach, it is first necessary to calculate
the per-unit-length parameters of the line including the influence of a
finitely conducting ground, for which many expressions are available
[13–24].

For narrowband applications, which involve frequencies up to
500 kHz [2], it is expected that Carson’s theory [14] be sufficiently
accurate for the calculation of the ground return impedance as long as
displacement currents in the ground are negligible. Carson’s equations
are used, for example, in [4] for studying PLC channels in medium-
voltage distribution lines. Other possibilities were also considered in

narrowband PLC channel modeling (e.g., [5,11]), such as Sunde’s
equations [15], which other than Carson’s equations allow the selection
of an arbitrary value of relative ground permittivity [23], and Pollac-
zek’s equations [13], which can be considered equivalent to Carson’s
equations for overhead line modeling [23].

For broadband applications, which involve frequencies in the range
1.7–100 MHz [2], Carson’s and Pollaczek’s equations no longer hold
and other formulations should be used. For example, the logarithmic
approximation of D’Amore and Sarto [20] is used in [9,12] for calcu-
lating the per-unit-length parameters of medium-voltage distribution
lines used as PLC channels. This formulation allows considering both
the impedance and admittance associated with a finitely conducting
ground, which are necessary for accurate transmission line modeling in
the high-frequency range [17–24]. In spite of that, the influence of the
admittance associated with a finitely conducting ground was neglected
in [7] when investigating the efficacy of using ground return in
broadband power line communications. In this particular reference,
only the ground return impedance was calculated using Sunde’s equa-
tions [15] for frequencies up to 100 MHz.

As seen from the discussion above, there seems to be no consensus
about how to include the ground influence on PLC channel modeling. In
addition, even though the conductivity and permittivity of the soil are
known to vary with frequency [25–30], all referred papers assumed
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constant soil electrical parameters in the estimation of the impedance
and admittance associated with a finitely conducting ground. Although
a recent experimental study was presented to give support to the
modeling of a narrowband PLC channel considering the dispersive
nature of the soil [31], the analysis was restricted to low-resistivity soils
of 10 Ωm and 100 Ωm for frequencies up to few hundreds of kHz, in
which case the variation of the ground conductivity and permittivity
with frequency is known to have a minimal effect on the line propa-
gation characteristics [32]. This means that it is still necessary to in-
vestigate to what extent considering dispersive soil parameters will
affect the attenuation level and the achievable data rate in a PLC
channel for a large range of soil characteristics in both narrowband and
wideband applications.

In this paper, a theoretical study is presented to investigate the
impact of dispersive soil parameters on the modeling of both narrow-
band and broadband PLC channels in a medium-voltage distribution
line. In the analysis, a single phase conductor is assumed and different
formulations are considered for the calculation of the impedance and
admittance associated with a finitely conducting ground. Besides em-
phasizing the impact of ground losses on the simulated PLC channel
including frequency-dependent soil parameters, assuming a single
conductor with earth return is able to provide information about the
ground mode in the modeling of multiconductor PLC channels. It also
gives information for the modeling of PLC channels in single wire earth
return (SWER) systems, which are used in many countries to supply
electric power to remote areas at low cost [33].

This paper is organized as follows. Section 2 presents the models
and solution method assumed in this study. It also discusses the for-
mulation used to estimate the average attenuation and the achievable
data rate in the simulated PLC channel. Results and analysis are pre-
sented in Section 3, followed by conclusions in Section 4.

2. Modeling assumptions

2.1. Transmission line modeling

The full-wave approach is a technique that can be used for de-
termining transmission line parameters in a wide frequency range
[16,18–22,24]. Assuming a wire of radius r and infinite length parallel
to coordinate x at height y= h above an imperfectly conducting
ground, and considering a harmonic current in the form I = Ime−γx,
where Im is the current amplitude and γ is an unknown propagation
constant, it is possible to write the so-called modal equation at the
angular frequency ω from the application of Maxwell’s equations and
consideration of the boundary conditions at the air–ground and air–-
wire interfaces [16,18–22,24]. The numerical solution of the modal
equation yields values for γ that can be used to determine the per-unit-
length parameters of the line. However, these parameters are sensitive
to the voltage definition considered in their derivation. Possible voltage
definitions are the line integral of the vertical electric field from the
ground surface to the wire [19,21], the potential difference between the
wire and the ground surface [21], the wire scalar potential with the
reference at infinity [21], or the line integral of the vertical electric field
from a reference plane at an infinite distance above or below the ground
surface to the wire [19]. Here, two different voltage definitions are
considered. One is given by (1), in which the voltageU x( )i is assumed to
correspond to the wire scalar potential = −φ x y h r( , ) with the re-
ference at infinity. The other is given by (2), in which the voltage U x( )ii
is obtained from the line integral of the vertical electric field from the
ground surface to the wire. In this expression, Ay is the magnetic vector
potential at direction y, = −φ x y h r( , ) is the wire potential, and

=φ x y( , 0) is the ground surface potential (see [21,24] for details). Eq.
(2) is considered more rigorous than (1) at high frequencies because it
includes the contribution of Ay [24].
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Calculating the propagation constant from the numerical solution of
the modal equation resulting from the full-wave model is cumbersome
and computationally inefficient [24]. To circumvent this difficulty, the
so-called quasi-TEM approximation can be used. It consists in assuming
that the unknown propagation constant γ is equal to the intrinsic pro-
pagation constant of the medium in which the wire is immersed
[21,24]. Using voltage definition U x( )i , Pettersson [21] arrived at (3)
and (4) for calculating the per-unit-length impedance and admittance of
an overhead wire. On the other hand, considering voltage definition
U x( )ii , Pettersson obtained (5) and (6) [21].
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If r ≪ h and a non-magnetic wire is assumed, the parameters in
(3)–(6) read [21,24]
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where μ0 and ε0 are respectively the permeability and permittivity of
the vacuum, σg is the ground conductivity, εr is the relative
permittivity of the ground, σ is the wire conductivity, =γ jω μ ε1 0 0 ,

= +γ jωμ σ jωε ε( )g r2 0 0 , and I0 and I1 are modified Bessel functions of
first kind and orders zero and one, respectively.

In Pettersson’s Eqs. (5) and (6), which are based on the rigorous
voltage definition given by (2), the correction of the per-unit-length
impedance and admittance due to a finitely conducting ground is
written in terms of S1, S2, and T. As discussed in [21], these terms ex-
tend the validity of the transmission line equations to frequencies in the
range of tens of MHz, which are suitable to the analysis of broadband
PLC channels. If Ay = 0 and = =φ x y( , 0) 0 are assumed in (2), that is,
if the voltage definition given by (1) is considered, equations (5) and (6)
reduce to (3) and (4), which can be shown to be equivalent to the in-
tegral equations proposed by Nakagawa [17] if the magnetic perme-
ability of media 1 and 2 are equal. This means that Nakagawa’s equa-
tions consider the impedance (S1) and admittance (S2) corrections due
to a finitely conducting ground, but implicitly assume voltage as equal
to the wire potential. If it is further assumed that S2 = 0, then the
correction due to a finitely conducting ground is restricted to S1 in (3).
It can be shown that this term reduces to Carson’s integral equation
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