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a b s t r a c t

The compression of sound absorbing materials can change significantly their acoustical properties. It is
commonly admitted that the air flow resistivity is the main parameter governing the acoustical effi-
ciency. Several authors propose empirical laws to predict the resistivity as function of the compression
rate. The models are based on a power function with a power related to the kind of material. In this paper,
we propose a generalized power law to calculate the air flow resistivity of compressed porous materials
with high porosity ðP 0:9Þ. The power is here related to the material initial porosity. The influence of
fibres orientation distribution is also addressed. The proposed formula shows a good agreement with
the measurements performed on several types of porous materials (four fibrous materials and two open
cell foams).

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Porous materials such as fibrous or foams are widely used in
almost every areas of noise control engineering such as automo-
tive, building and aerospace. In some applications, they are com-
pressed into thin non uniform panels. This compression modifies
the bulk material density, the porosity, the air flow resistivity
and consequently, the acoustical properties. Among these parame-
ters, the resistivity is admitted to be the main parameter governing
the acoustical properties [1–6].

To estimate analytically the air flow resistivity of porous mate-
rials, two approaches are encountered.

The first approach is analytical: simplified geometrical models
of the porous material are used to derive an analytical expression
of the resistivity. For fibrous materials, a general equation is pro-
posed by Tamayol [9] for a periodic regular arrangement of cylin-
ders with a parallel or perpendicular flow. Tarnow [10,11]
introduced a Voronoi distribution to model a random network of
parallel cylinders. For more complex microgeometries, like foams,
only numerical models are suitable [7,8].

The second approach is experimental: a large number of mate-
rials are tested and empirical laws for the resistivity are then pro-
posed (see Table 1). Kozeny–Carman [12,13] first developed a
relation to calculate the resistivity of a granular media. Other

authors have applied this relation for modeling fibrous materials
[14]. In these works the flow resistivity is related to the porosity,
the particle size and a factor Kc obtained from the measurements.
Nichole [15] related the air flow resistance R to the thickness of
the material L, the surface density S, and the cross-sectional
radius of the fibres a by a power law. Bies and Hansen [16] pre-
sented a simple model to calculate the resistivity of fibrous mate-
rials with the fibre diameter d, the bulk density qm, and two
geometrical constants K1 and K2. They pointed out that the equa-
tion was suitable for fibres with uniform diameters. Garai and
Pompoli [17] extended the equation of Bies and Hansen to polye-
ster fibres with larger and more dispersed diameters and densi-
ties. Kino [18–20] applied the law of Bies and Hansen to
different porous materials (polyester material, glass wool and
melamine foam). They modified the values of the two constants
K1 and K2 to fit with their measurements. However, no general
law has been given so far to derive these constants for any kind
of porous material.

Castagnède et al. [21,22] studied the relationship between the
physical parameters in the equivalent fluid model and the com-
pression rate n;n being defined as the ratio between the nominal

thickness hð1Þ and the compressed thickness hðnÞ. They proposed a
linear and a quadratic law to predict the resistivity after compres-
sion, but their models are limited to low compression rates n < 2.
Lei et al. [23] proposed new formulas to predict the variations of
six physical parameters suitable for high compression rates (n up
to 10). Their model accounts for the variation of fibres orientation
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due to the compression, on the basis of the works of Tarnow
[10,11] and Tamayol [9].

In this paper, we propose a generalized power law to predict the
air flow resistivity of a compressed porous material from its initial
porosity and resistivity, without adjusting any empirical coeffi-
cient. First, the power law is given and a polynomial expression
of the exponent K2 is derived from the analytic models presented
in our previous paper [23]. The polynomial relation are function
of the initial porosity, and are given for different initial fibre orien-
tations and different fibre arrangements (regular or random).
Finally, the predictions are compared to the measurements of sev-
eral types of porous materials (glass wool, polyester fibres, foams)
and compression rates.

2. Theory

2.1. Power law for air flow resistivity

The resistivity proposed by Bies and Hansen is presented in the
following form:

r ¼ K1qK2
m =d2

; ð1Þ
where qm is the mass density, d is the fibre diameter, K1 is a con-
stant, characteristic of a particular material. The value K2 is deter-
mined from the construction of the material which is linked to
the arrangement of fibre and their orientation in the material. When
the compression occurs, K1 and d are considered not to change,

while the mass density after compression is qðnÞ
m ¼ nqð1Þ

m . Together
with Eqs. (1) the air flow resistivity at compression rate n writes:

rðnÞ ¼ nK2rð1Þ: ð2Þ
For a material having a porosity between 0:9 and 1, the value K2

varies from 1:3 to 2 [15]. However no explicit relation is established
between the porosity and the constant K2 in the literature. This is
the main objective of this paper.

2.2. Determination of the constant K2

The exponent K2 can be related to the initial porosity of the
material by best fitting the power law Eqs. (2) with the resistivity
derived analytically in Ref. [23]. The analytic resistivity of a com-
pressed material rðnÞ is recalled here for two fibres arrangements:

rðnÞ
r ¼ nrð1Þ ½0:64 lnð1=ð1� /ð1ÞÞÞ � /ð1Þ þ 0:263�

½0:64 lnð1=ð1� /ðnÞÞÞ � /ðnÞ þ 0:263�

. . .

Pm
i¼1f ið1þ tan2 hð1Þi Þ=ð2þ tan2 hð1Þi ÞPm

i¼1f iðn2 þ tan2 hð1Þi Þ=ð2n2 þ tan2 hð1Þi Þ
ð3Þ

rðnÞ
s ¼ nrð1Þ lnð1� /ð1ÞÞ � 2ð1� /ð1ÞÞ þ 1:479þ ð1� /ð1ÞÞ2=2

lnð1� /ðnÞÞ � 2ð1� /ðnÞÞ þ 1:479þ ð1� /ðnÞÞ2=2

�
Pm

i¼1f ið1þ tan2 hð1Þi Þ=ð2þ tan2 hð1Þi ÞPm
i¼1f iðn2 þ tan2 hð1Þi Þ=ð2n2 þ tan2 hð1Þi Þ

; ð4Þ

where the subscript s; r indicates the arrangement of fibres either a
square or a random array respectively, /ð1Þ and /ðnÞ are the porosity

of the material before and after compression, hð1Þi is the fibre initial
orientation angle, f i is the initial probability density function so that

f ðhð1Þi Þ ¼ f i, and m is number of angular partitions between 0 and
p=2.

Table 1
Empirical model for the resistivity of porous materials.

Authors Model Type of materials

Kozeny, Carman 1937 r ¼ Kc

d2
ð1�/Þ2

/3
Granular media

0:9 < / < 1:0

Nichols, Jr RH 1947 R ¼ K Sð1þxÞ

Lxa2
Fibrous materials

0:3 6 x 6 1 0:9 < / < 1:0

Bies, Hansen 1980 r ¼ K1 � qK2
m =d2 Glass fibres

K2 ¼ 1:53 1 < d < 15 lm
K1 ¼ 3:18� 10�9

Garai, Pompoli 2005 K2 ¼ 1:404 Polyester fibres

K1 ¼ 28:3� 10�9 18 < d < 48 lm

Kino, Ueno 2007 K2 ¼ 1:53 Polyester fibres

K1 ¼ 15� 10�9 14:2 < d < 39 lm

Kino, Ueno 2008 K2 ¼ 1:53 Melamine foam

K1 ¼ 11:5� 10�9 100 < d < 200 lm

Kino, Ueno 2009 K2 ¼ 1:53 Melamine foam

K1 ¼ 8� 10�9 150 < d < 300 lm

Fig. 1. Exponent K2 drawn as a function of the initial porosity /ð1Þ and initial
angular distribution represented by the median angle ehð1Þ for a random arrange-
ment of fibre (Eq. (3)). The two solid blue lines represent the polynomial function
for ehð1Þ ¼ 0� (Eq. (8)) and ehð1Þ ¼ 20� (Eq. (6)) plotted in figure and respectively.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. Generated angular distribution for fibrous material with the median angle
ehð1Þ ¼ 20� (the dash line).
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