Contents lists available at ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman

Definition and performance simulations of a novel solar-driven hybrid absorption-thermochemical refrigeration system

Jaume Fitó^{a,b,c}, Alberto Coronas^c, Sylvain Mauran^{a,b,*}, Nathalie Mazet^a, Driss Stitou^a

^a CNRS-PROMES Laboratoire Procédés Matériaux et Energie Solaire UPR 8521, Perpignan 66100, France

^b Université de Perpignan Via Domitia (UPVD), Perpignan 66860, France

^c Department of Mechanical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain

ARTICLE INFO

Keywords: Refrigeration Hybrid system Absorption Thermochemical storage Low-grade heat source Energy performance

ABSTRACT

This paper proposes a novel hybrid refrigeration system with energy storage, driven by low-grade solar heat and consisting of a single-stage absorption cycle coupled with a thermochemical process by sharing the same condenser, evaporator and refrigerant fluid. A first screening of ammonia-based working pairs for evaporation temperatures of -10 °C, condensation temperatures of 30 °C and heat source temperatures of 80 °C reveals LiNO3 as suitable sorbent salt for the absorption subsystem, and BaCl2, PbBr2, SrCl2, LiCl, NH4Br and SnCl2 as candidate reactive salts in the thermochemical subsystem. The subsequent parametric study indicates that the absorption subsystem with NH₃/LiNO₃ reaches close-to-maximum COP at the indicated conditions, and the thermochemical subsystem delivers its highest COP with the NH₃/BaCl₂ pair. Then, the power-storage and performance-storage relationships of the thermochemical subsystem are analyzed for the NH₃/BaCl₂ pair with respect to variations in operating conditions and several implementation parameters of the reactive composite. Finally, the performance of the hybrid system with the (NH₃/LiNO₃ + NH₃/BaCl₂) pair combination is compared to its subsystems against a variable demand profile calculated from climatic data of July in Barcelona, Spain, A novel indicator is defined to assess demand coverage: the Coefficient of Satisfaction of Demand (CSD). Depending on solar collector field area and amount of refrigerant storable by the thermochemical subsystem, the hybrid system reaches up to 24% higher CSD than the reference system (a solar single-stage absorption refrigerator with no storage), and at least 14% higher COP than the thermochemical process.

1. Introduction

Global warming of planet Earth requires diligent solutions towards a more sustainable model. This has become a priority also in the field of refrigeration, where some of the efforts are put into developing systems that are less dependent on fossil fuels, resulting in no or minor impact on the environment. Renewable energy sources, especially solar energy, are an interesting option full of perspectives.

Solar absorption refrigeration has been widely investigated in the recent decades [1]. While proven viable, mismatch between the solar resource and the demand of cold is still an important technological roadblock, traditionally addressed through energy storage [2]. Energy storage within the absorption system itself has been investigated for the water/lithium bromide working pair, both numerically [3–5] and experimentally [6,7]. The idea of using crystallization in this system for higher density energy storage has drawn attention in the recent years and is also under study [8]. On the other hand, systems based on

thermochemical transformation [9] of energy have proved promising for the purposes of energy storage [2] and upgrade [10]. An interesting variation of this technology is to connect two different reactive salts (in two different reactors) through the same reactant gas. These advanced systems are usually called 'resorption systems' and have also been investigated for (seasonal) energy storage [11] and energy upgrade [12].

As the basic refrigeration systems reach their peaks in design, the idea of developing advanced systems by combining some of their components gains interest. The concept is not new and several proposals exist in the literature, both for absorption refrigeration and thermochemical processes separately. More of these combinations have been proposed for absorption refrigeration, given its maturity. One example is the absorption-compression refrigeration system, proposed under the idea of 'integration' by Riffat and Shankland [13]. Ayala et al. [14] concluded in a later study that with the NH₃/LiNO₃ pair, this hybrid allowed up to 10% increase in overall efficiency, and suggested to retrofit existing ammonia vapor compression plants. The study was

* Corresponding author at: CNRS-PROMES Laboratoire Procédés Matériaux et Energie Solaire UPR 8521, Tecnosud, Perpignan 66100, France. *E-mail address:* mauran@univ-perp.fr (S. Mauran).

https://doi.org/10.1016/j.enconman.2018.08.098

Received 30 May 2018; Received in revised form 7 August 2018; Accepted 26 August 2018 Available online 07 September 2018 0196-8904/ © 2018 Elsevier Ltd. All rights reserved.

Nomenclature	
A	area m^2
A	absorber
ARS	Absorption Refrigeration Subsystem
C	condenser
Ср	specific heat capacity, J/(mol K)
CDD	Cooling Degree Days
COP	Coefficient Of Performance
CSD	Coefficient of Satisfaction of the Demand
De	energy storage density, kW h/m ³
е	thickness, m
Ε	evaporator
EHX	Heat Exchanger Effectiveness
ENG	Expanded Natural Graphite
EV	Expansion Valve
f	solution circulation ratio, kg $s^{-1}/(kg s^{-1})$
G	gas
G	generator
h	specific enthalpy, kJ/kg
h _c	convective heat transfer coefficient, W/(m ² K)
HATRS	<u>Hybrid Absorption-Thermochemical Refrigeration System</u>
	liquid
IVI MV	molar mass, kg/kmol
m	metal nalide
ni m	mass flow rate kg/s
'n	molar flow rate mole/s
P	pressure, bar
Q	heat, kJ
ġ	heat rate, kW
ġ	specific heat rate (referred to surface), kW/m^2
R	thermochemical reactor
R	universal gas constant, J/(mol K)
RST	Refrigerant Storage Tank
S	solid
S	specific entropy, kJ/(kg K)
SHATKS	Solar <u>Hybrid</u> <u>Absorption-Inermochemical</u> <u>Refrigeration</u>
сцу	Solution Hoot Evaluation
STIA	Solution Dump
T	temperature °C
t I	time h
TCS	Thermochemical Subsystem
U	global heat transfer coefficient, $W/(m^2 K)$
V	valve
V	apparent volume, m ³
ν	specific volume, m ³ /kg
Ŵ	power, kW
w	mass fraction, kg/kg-total
X	reaction advancement degree ($X = 0$ for completely dis- charged salt and $X = 1$ for completely charged salt)
Greek svr	nbols
-	
α	correction factor
Δ	increment
ρ	density, kg/m ³
ν	reaction's stoichiometric coefficient
ε	porosity

λ.	thermal conductivity. W/(m K)	
ρ	apparent density, kg/m ³	
η	efficiency	
ξ	moles of refrigerant in the fully discharged salt	
ξ	reactor's occupied volume	
Subscripts and superscripts		
0	reference point	
1	composite with reactive salt at $X = 1$	
А	absorber	
Amb	ambient	
ARS	absorption refrigeration subsystem	
AUX	auxiliary system	
avg	average	
C	condenser	
C cold	reactive composite	
d	demand of cold	
u dav	davtime	
uay F	evaporator	
ENG	Expanded Natural Graphite	
ea	equilibrium	
ex	heat exchanger	
G	generator	
g	refrigerant gas	
gdif	gas diffuser	
gsat	saturated vapor	
Н	high temperature or pressure level	
hot	hot fluid in the heat exchanger	
hs	driving heat source	
HYB	hybrid system	
in	inlet	
1	low pressure or temperature level	
m		
max	minimum	
net	naximum pet useful	
night	night_time	
out	outlet	
R	reaction	
r	reactor	
rad	solar radiation	
rd	decomposition reaction	
ref	refrigerant	
rs	synthesis reaction	
S	surface	
S	reactive salt	
s0	fully discharged reactive salt	
s1	fully charged reactive salt	
sa	anhydrous reactive salt	
SP	solution pump	
SS	strong solution (referred to ammonia)	
St	stanness steel	
105	unermocnemical subsystem	
V 142	vaporization wall	
ws	weak solution (referred to ammonia)	

followed by a 7 kWt prototype which reached its maximum COP when using 90% compression and 10% absorption [15]. Several other studies exist for the absorption/compression system, for instance towards

system optimization with the ammonia/water pair [16], optimization accounting for internal and external irreversibilities [17], waste heat utilization [18] including cascade use [19], or low evaporation

Download English Version:

https://daneshyari.com/en/article/10140180

Download Persian Version:

https://daneshyari.com/article/10140180

Daneshyari.com