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A B S T R A C T

An asymptotic solution for interface crack between mismatched materials that obey a special
form of linear isotropic strain gradient elasticity under conditions of plane strain is developed. It
is shown that the asymptotic solution depends in a complicated manner both on a mismatch of
elastic properties and a mismatch of the internal length scale parameter. Numerical analysis
shows that the mismatch of elastic moduli and the gradient coefficient c respectively lift the
degeneracy of the exponent p that is characteristic for a crack in homogeneous material. The total
energy release rate Gint due to a crack extension along the interface is derived generalizing the
classical virtual crack closure method. The reciprocal work contour integral method for the
evaluation of amplitude factors in the asymptotic expansion is extended to interface crack in the
linear isotropic strain gradient elasticity.

1. Introduction

The paper deals with the determination of the asymptotic displacement, strain and stress fields in the vicinity of the interface
crack between two mismatched materials governed by dipolar gradient elasticity which by introducing intrinsic length scale allows
predicting the scale effects observed experimentally. The gradient elasticity and, in general, higher order continua theories have
recently attracted the attention of researchers in various disciplines due to the ability of the higher-order or nonlocal terms to model
phenomena which cannot be described by classical elasticity since it does not include an internal length scale in its constitutive
structure. Among these phenomena belong for example the occurrence of size effects (i.e. the dependence of strength or other
macroscopic properties on specimen size), as well as fracture and/or interface processes where the detailed ‘‘non-singular’’ or
‘‘continuous’’ distribution of stress and strain fields near the crack tip or the interface is of prime importance. Currently an increasing
effort to capture effects of microstructure in the framework of generalized continuum theories is driven by emerging of new materials
and devices with the characteristic size lengths comparable to the lengths of material microstructure. The intention is to extend the
range of applicability of the continuum concept and thus to contribute to bridging the gap between classical continuum theories and
atomic-lattice theories. A major reason of this effort is that molecular dynamics and/or quantum mechanics based simulations require
tremendous computation resources. A general higher-order elastic theory was proposed by Mindlin [1]. For practical purposes,
Mindlin also formulated three simplified versions of the general isotropic theory, utilizing only two material and five internal length-
scale constants in the final constitutive relation rather than 18 used in Mindlin’s initial model. According to the inherent form of the
strain energy density these three versions are specified as Form I, II and III. In the case of the Form I is the strain energy density a
quadratic form of the classical strains and the second gradient of displacement. In the case of the Form II is the strain energy density a
quadratic form of the classical strains and the gradient of strains and in the case of the Form III is the strain energy density a quadratic
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Nomenclature

Mathematical symbols

⊗ tensor product
· scalar product
= ∇D n· normal derivative on the contour with the normal

unit vector n
∂k partial derivative with respect to the coordinate k
∇ gradient operator
∇2 Laplacian operator

∇ = ∇− Dn
s

surface gradient operator on the contour with
the normal unit vector n

= −i ( 1)1/2 complex unit
I unit dyadic tensor
⌢I anti-diagonal unit dyadic tensor
r φ x y( , ), ( , ) polar and Cartesian coordinates
R I, real and imaginary part of a complex expression
 f jump of a function f across the interface
Γ(.) Gamma function

Greek symbols

β Dundurs parameter
Γ closed contour encircling the crack tip
ε imaginary part of the singularity exponent in the

classical elasticity
ε ε,J

kl
J( ) ( ) strain tensor and its kl component

κJ Kolosov’s constant
λJ Lamé constant
μJ shear modulus
νJ Poisson’s ratio
σkl

J( ) kl -stress component in the classical elasticity
τ τ,J

kl
J( ) ( ) monopolar stress tensor and its kl -component in

the gradient elasticity

∼τ
J( ) angular functions of the asymptotic monopolar

stress vector τ J( )

ψ ψ, k phase angle

Latin symbols

aΔ finite crack extension
… …A B,J J

1 4
( )

1 4
( ) elements of the eigenvector a b[ , ]J J T( ) ( )

A B,J J( ) ( ) matrices of the angular functions in the expression
for the asymptotic displacements u J( )

A B,φ
J

φ
J

,
( )

,
( ) derivative of the elements of the matrices A J( ) and

B J( ) with respect to φ
a b[ , ]J J T( ) ( ) eigenvector in the eigenvalue problem (35)

̂ ̂̂ ̂a b a b[ , ] , [ , ]J J T
k
J

k
J T( ) ( ) ( ) ( )

normalized eigenvector a b[ , ]J J T( ) ( )

c c, J internal length scale parameter [length]2

C C,k k1 2 matrices appearing in the expression for the near-
tip displacement jump across the crack uΔ

′ ′C C,k k1 2 matrices appearing in the expression for the deri-
vative of the near-tip displacement jump across the
crack ∂ uΔy

� …1 4 operators of the boundary conditions on traction-
free crack faces

� …
+
1 4 operators of the boundary conditions on traction-

free crack faces of the adjoint problem
EJ Young modulus

e e,r φ polar orthonormal base vectors
f g,kl

J
kl

J( ) ( ) angular functions of the classical elasticity stress
tensor component

F J( ) matrix of expressions appearing in the boundary
conditions on crack faces

F eigenvalue problem matrix composed of the ma-
trices F J( ) and G J( )

Gint total interfacial energy release rate
G int

1 , Gint
2 Mode I and Mode II energy release rates

G J( ) matrix of expressions appearing in the continuity
conditions at the bonded part of the interface

Hk,
∼Hk complex amplitude factor, modified complex am-

plitude factor
� �,h path independent integrals appearing in the for-

mula for the evaluation of the complex amplitude
factor Hk

…I1 8 special integrals appearing in the ERR expressions
=J I II, material indices

k general index or index of characteristic exponent
of the asymptotic field pk, where =k 1,2

κk
J( ) constants appearing as elements of the matrices

S S C, ,k k k1 2 1 and C k2
= +K K iK1 2 classical elasticity complex stress intensity

factor
… pK K, ( )1 2 5 matrices of the differential operator � p( )

+
…
+ pK K, ( )1 2 5 matrices of the adjoint differential operator

�+ p( )
l reference length
� p( ) ordinary fourth-order differential operator
�+ p( ) adjoint differential operator
m ,J( ) mjkl

J( ) dipolar stress tensor and its jkl component
mm ,r

J
rkl

J( ) ( ) vector of the asymptotic dipolar stress tensor
components rkl

m mm m, , ,φ
J

φkl
J

y
J

ykl
J( ) ( ) ( ) ( ) vector of the asymptotic dipolar stress

tensor components φkl and ykl corresponding to
≠φ 0 and =φ 0, respectively

∼ ∼mm ,r
J

rij
J( ) ( ) angular functions of the asymptotic dipolar stress
vector mr

∼ ∼mm ,φ
J

φij
J( ) ( ) angular functions of the asymptotic dipolar stress
vector mφ

∼m ykl
J( ) complex-valued components appearing in the ex-

pression for the asymptotic dipolar stress vector
my on the bonded part of the interface

∗ ∗mm ,r
J

rkl
J( ) ( ) complementary dipolar stress vector mr and its

components
∗m ,φ

J( ) ∗mφkl
J( ) complementary dipolar stress vector mφ and its

components
M ,r

J( ) Nr
J( ) matrices of the angular functions in the expression

for the asymptotic dipolar stresses mr
M ,φ

J( ) N M N, ,φ
J

y
J

y
J( ) ( ) ( ) matrices of the angular functions in the

expression for the asymptotic dipolar stresses mφ
and my, respectively
M ,J

1
( ) M J

2
( ) submatrices of the matrix Mφ

J( )

N ,J
1
( ) N J

2
( ) submatrices of the matrix Nφ

J( )

n outer normal unit vector
� …1 4 operators of the transmission conditions at the

bonded interface
� …
+
1 4 operators of the transmission conditions at the

bonded interface of the adjoint problem
p p, k characteristic exponent of the asymptotic field
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