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a b s t r a c t

In this paper we present an interpolation approach to the fractional Sobolev spaces
in Carnot groups using the K-method. This approach provides us with a different
characterization of these Sobolev spaces, moreover, it provides us with the limiting
behavior of the fractional Sobolev norms at the end-points. This allows us to deduce
results similar to the Bourgain–Brezis–Mironescu and Maz’ya–Shaposhnikova in the
case p > 1 and Dávila’s result in the case p = 1. Also, this allows us to deduce the
limiting behavior of the fractional perimeter in Carnot groups.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Carnot groups appear as the first level extension of the classical Euclidean spaces, in the sense that they
are modeled over Rn but with a different group structure. Nevertheless, they share many analytical properties
with the Euclidean case. The typical example of Carnot group is the classical Heisenberg group. Lately, there
has been a lot of interest in PDEs and fractional PDEs in this group coming from a geometric background
since it is the flat context of CR-geometry, see for instance [23,22,34,26,27] and the references therein.
Moreover, Carnot groups have also been largely studied in several aspects, such as differential geometry [13],
subelliptic differential equations [5,18,17,36] and complex variables [39]. For a general introduction to Carnot
groups from the point of view of the present paper and for further examples, we refer, e.g., to [5,18,39].

It is natural then to investigate to which extent one can generalize to Carnot groups the analytical tools
that are well understood in the Euclidean case, see for instance [16,28].

In this setting, we propose to study fractional Sobolev spaces from an interpolation point of view.
Fractional Sobolev spaces in the literature, are also called Aronszajn, Gagliardo or Slobodeckij spaces, by the
name of the ones who introduced them, almost simultaneously [2,24,37]. In Carnot groups fractional Sobolev
spaces have been introduced and studied in [18,17] and many different characterizations are now present,
such as the ones in [35]. In the present paper we use the K-method for real interpolation, see for instance [4],
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to give an alternative characterization of fractional Sobolev spaces in Carnot groups. As a consequence, we
derive a Bourgain–Brezis–Mironescu [6–8] (Theorem 5.1) and Ma’zya–Shaposhnikova type limiting behavior
(Theorem 5.2) of the Sobolev norms similarly to the approach developed in [29]. We point out that the
exact limit of the fractional Sobolev norm (as the fractional parameter goes to 1) was investigated in [3]
using exact and technical computations. We also bring to the reader’s attention the extensions of these types
of results to other settings and to different functionals as in [1,8,9,11,10,30–32,38]. For p = 1 we provide a
limiting behavior leading to the space of BV -functions that are of great interest in geometric measure theory
in the setting of Carnot groups, see [19,21,20]. This will allow us to characterize the fractional perimeter in
Carnot groups and understand its limiting behavior when the fractional parameter goes to 1, as it was done
in the Euclidean setting in [15,33].

This manuscript is structured as follows: First, in Section 2, we present the structure of Carnot groups
and define Sobolev Spaces and BV -Spaces in this setting. In Section 3, we provide the necessary notations,
definitions and properties of the K-interpolation, which will be the main tool in our investigation. In Section 4,
we provide another characterization of the K function in Carnot groups. This allows us to deduce an
alternative characterization of the fractional Sobolev spaces. Finally, in Section 5, we provide applications
of the characterizations given in Section 3. Namely, we present the limiting behavior of the Fractional
Sobolev norms in the two end points, allowing us to obtain results similar to the ones already proved by
Bourgain–Brezis–Mironescu and by Ma’zya–Shaposhnikova in [6–8] for the case p > 1 and by Dávila in [15]
for the case p = 1. Also, we provide an alternative definition and characterization to the fractional perimeter
and its limiting behavior at the end-points as in [15,33].

2. Carnot groups

A connected and simply connected stratified nilpotent Lie group (G, ·) is said to be a Carnot group of
step k if its Lie algebra g admits a step k stratification, i.e., there exist linear subspaces V1, . . . , Vk such that

g = V1 ⊕ · · · ⊕ Vk, [V1, Vi] = Vi+1, Vk ̸= {0}, Vi = {0} if i > k, (2.1)

where [V1, Vi] is the subspace of g generated by the commutators [X, Y ] with X ∈ V1 and Y ∈ Vi.
Set mi = dim(Vi), for i = 1, . . . , k and hi = m1 + · · · + mi, so that hk = n. For sake of simplicity, we

write also h0 = 0, m := m1. We denote by Q the homogeneous dimension of G, i.e., we set

Q :=
k∑

i=1
i dim(Vi).

We choose now a basis e1, . . . , en of Rn adapted to the stratification of g, i.e., such that ehj−1+1, . . . , ehj
is

a basis of Vj for each j = 1, . . . , k. Moreover, let X = {X1, . . . , Xn} be the family of left invariant vector
fields such that Xi(0) = ei, i = 1, . . . , n. The exponential mapping exp : g → G is a diffeomorphism. Given
a basis X1, . . . , Xn of g adapted to the stratification, any x ∈ G can be written in a unique way as

x = exp(x1X1 + · · · + xnXn) = ex1X1+···+xnXn .

We identify x with (x1, . . . , xn) ∈ Rn and hence G with Rn. This is known as exponential coordinates of the
first kind.

The sub-bundle of the tangent bundle TG that is spanned by the vector fields X1, . . . , Xm is called the
horizontal bundle HG; the fibers of HG are

HxG = span{X1(x), . . . , Xm(x)}, x ∈ G.
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