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h i g h l i g h t s

• Applications of network theory are wide-ranging.
• Weighted networks are ubiquitous in many real-life complex systems.
• New concept of fuzzy weighted recurrence networks is presented.
• Fuzzy weighted recurrence networks are more robust than unweighted recurrence networks.
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a b s t r a c t

The concept of networks in the context of graph theory delineates a wide variety of
real-life complex systems. The theory of networks finds its applications very useful in
many scientific and intellectual domains. Weighted networks can characterize complex
statistical graph properties, particularly where node connections are heterogeneous. A
framework of fuzzy weighted recurrence networks of time series is presented in this letter.
Popular graphmeasures including the average clustering coefficient and characteristic path
length of fuzzy weighted recurrence networks are shown to be more robust than those of
unweighted recurrence networks derived from binary recurrence plots.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Applications of complex networks are pervasive in many disciplines, including natural science, computer science,
engineering, life science, medicine, health, sociology, economics, and finance. Stemming from the concept of recurrence
plots [1,2], research into recurrence networks of time series has opened a new direction for exploring and gaining insight
into the behavior of complex systems [3,4]. Recurrence networks constructed from recurrence plots are unweighted
networks. However, the existence of weighted networks is widespread in many natural relationships [5–7], where weights
represented in real-life networks are heterogeneous. Thus, the use of network weights is useful for recognizing links of
varying importance and influence in complex systems [7]. Yet relatively little effort has been spent on the development of
methods for weighted recurrence networks. It appears that there is only onemethod for constructingmultivariate weighted
recurrence networks [8], inwhich the edgeweights are obtained using cross recurrence plots ofmultiple dynamical systems;
but none for univariate weighted recurrence networks.

Based on the concept of fuzzy recurrence plots [9], the formulation of univariate fuzzy weighted recurrence networks of
time series is introduced herein. It is pointed out herein that the univariate scalable recurrence networks reported in [10] are
also derived from fuzzy recurrence plots, but these networks are unweighted and therefore a different development with
respect to thework addressed herein. The rest of this letter is organized as follows. Section 2 briefly reviews the technique for
constructing an unweighted recurrence network. Section 3 presents the formulation of a fuzzyweighted recurrence network.
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Twopopular graphmeasures knownas the clustering coefficient and characteristic path length for unweighted andweighted
networks are presented in Section 4. Results obtained fromunweighted recurrence networks and fuzzyweighted recurrence
networks are presented in Section 5. Comparisons and discussion of the graphmeasures of complex networks obtained from
unweighted recurrence networks and fuzzy weighted recurrence networks are addressed in Section 6. Finally, Section 7 is
the conclusion of the research findings.

2. Unweighted recurrence networks

An unweighted recurrence network (RN) represented by its adjacency matrix A is defined as [11]

A = R − I, (1)

where R and I are the N × N recurrence matrix of the recurrence plot and N × N identity matrix, respectively.
A recurrence matrix is constructed by considering the recurrences of the phase-space states X = {x}. In other words, a

recurrence matrix is a visualization of the number of times the phase space trajectory of the dynamical system visits the
same location in the phase space it has visited before. Hence, a recurrence plot, denoted as RP = [Rij] is defined as [2]

Rij = Θ(φ − ∥xi − xj∥), i, j = 1, . . . ,N, (2)

where φ is the recurrence threshold, and Θ is the Heaviside step function, that is Θ = 1 if ∥xi − xj∥ ≤ φ, or Θ = 0 if
∥xi − xj∥ > φ.

3. Fuzzy weighted recurrence networks

Let X = {x} be the set of phase-space states, N a given number of clusters of the states, and a set of N fuzzy clusters,
V = {vi : i = 1, . . . ,N}. Fuzzy clusters can be defined as groups that contain data points, where each data point has a degree
of fuzzy membership of belonging to each group (the reader is referred to [12] for detailed explanations about the concept
and technical formulation of fuzzy clustering). By analogy with the inference for constructing a fuzzy recurrence plot and
scalable network [9,10], a fuzzy relation R̃ between vi and vj, i, j = 1, . . . ,N , is characterized by a fuzzymembership function
µ ∈ [0, 1], which expresses the degree of similarity of each pair (vi, vj) in R̃, and has the following three properties [13]:

1. Reflexivity: µ(vi, vi) = 1, ∀vi ∈ V.
2. Symmetry: µ(vi, x) = µ(x, vi), ∀x ∈ X, ∀vi ∈ V.
3. Transitivity: µ(vi, vj) = ∨x[µ(vi, x) ∧ µ(vj, x)], ∀x ∈ X, ∀vi, vj ∈ V, where the symbols ∨ and ∧ stand for max and

min, respectively.

An N × N fuzzy weighted recurrence network (FWRN) can be constructed with an associated fuzzy weighted adjacency
matrix as

W = R̃ − I, (3)

whereW is an N × N adjacency matrix of edge weights, and I is the N × N identity matrix.
The set of N fuzzy clusters, V, can be obtained using the fuzzy c-means algorithm (FCM) [12] as follows. Let µij denote

a fuzzy membership grade of xi, i = 1, . . . ,M , which belongs to a cluster j, j = 1, . . . , c , whose center is vj. This fuzzy
membership is calculated by the FCM as

µik =
1∑c

j=1

[
d(xi,vk)
d(xi,vj)

]2/(m−1) , (4)

where 1 ≤ m < ∞ is the weighting exponent, and d(xi, vj) is used as a Euclidean distance between xi and vj.
Using the fuzzy membership grades, each cluster center vj is computed as

vj =

∑M
i=1(µij)m xi∑M
i=1(µij)m

, ∀j. (5)

The iterative procedure of the FCM is outlined as follows.

1. Given c , m, step t , t = 0, . . . , T , initialize matrix U(t=0)
= [µij]

(t=0)

2. Compute v(t)j , j = 1, . . . , c , using Eq. (5).

3. Update U(t+1) using Eq. (4).
4. If ∥U(t+1)

− U(t)
∥ < ϵ or t = T , stop. Otherwise, set U(t)

= U(t+1) and return to step 2.
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