Accepted Manuscript

Fabrication of a new electrochemical sensor based on Au-Pt bimetallic nanoparticles decorated multi-walled carbon nanotubes for determination of diclofenac

Muhaned Mohammed Altai, Gholam Hossein Rounaghi, Behjat Deiminiat

PII: S0026-265X(18)30797-5

DOI: doi:10.1016/j.microc.2018.09.009

Reference: MICROC 3357

To appear in: Microchemical Journal

Received date: 26 June 2018

Revised date: 10 September 2018 Accepted date: 10 September 2018

Please cite this article as: Muhaned Mohammed Altai, Gholam Hossein Rounaghi, Behjat Deiminiat, Fabrication of a new electrochemical sensor based on Au-Pt bimetallic nanoparticles decorated multi-walled carbon nanotubes for determination of diclofenac. Microc (2018), doi:10.1016/j.microc.2018.09.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Fabrication of a new electrochemical sensor based on Au-Pt bimetallic nanoparticles decorated multi-walled carbon nanotubes for

determination of diclofenac

Muhaned Mohammed Altai, Gholam Hossein Rounaghi*¹, Behiat Deiminiat

Department of Chemistry, Faculty of sciences, Ferdowsi University of Mashhad, Mashhad-Iran

Abstract

A new electrochemical sensor was developed for determination of diclofenac based on

functionalized multi-walled carbon nanotubes (f-MWCNTs) and gold-platinum bimetallic

nanoparticles (Au-PtNPs) modified gold electrode. The Au-PtNPs were deposited

electrochemically on the surface of the f-MWCNTs modified electrode. The surface

morphologies of the modified electrodes were investigated by scanning electron microscopy

(SEM) and energy dispersive X-ray spectroscopy (EDX). Cyclic voltammetry (CV) and

differential pulse voltammetry (DPV) were used to evaluate the electrochemical properties of

the constructed sensor. Under the optimized experimental conditions, the calibration curve

was linear in the concentration range of 0.5 µM to 1000 µM of diclofenac and the detection

limit was found to be 0.3 µM. The developed electrode also showed a high selectivity for

diclofenac in the presence of the interfering species. The reproducibility, repeatability and

stability of the electrode were satisfactory. The proposed electrochemical sensor was

successfully employed for determination of diclofenac in real samples such as tablet and

human urine samples.

Keywords: electrochemical sensor, diclofenac, functionalized multi-walled carbon

nanotubes, gold-platinum bimetallic nanoparticles, voltammetry

1. Introduction

Diclofenac sodium (sodium [o-(2, 6-dichloroanilino) phenyl] acetate, DS) which is classified

as a nonsteroidal anti-inflammatory drug (NSAID), possesses analgesic, anti-inflammatory

and antipyretic activity [1]. It is widely used for treating a variety of inflammatory and

painful diseases including rheumatoid arthritis, osteoarthritis, soft tissue disorders, renal

¹ *Corresponding author: Tel: +98 5137626388

E-mail address: ghrounaghi@yahoo.com; ronaghi@um.ac.ir

1

Download English Version:

https://daneshyari.com/en/article/10140987

Download Persian Version:

https://daneshyari.com/article/10140987

<u>Daneshyari.com</u>