Accepted Manuscript

Full Length Article

Geometry, electronic structure, morphology, and photoluminescence emissions of $BaW_{1-x}Mo_xO_4$ (x=0, 0.25, 0.50, 0.75, and 1) solid solutions: theory and experiment in concert

Marisa Carvalho Oliveira, Juan Andrés, Lourdes Gracia, Michelle Suzane M.P. de Oliveira, Jose Manuel R. Mercury, Elson Longo, Içamira Costa Nogueira

PII: S0169-4332(18)32284-0

DOI: https://doi.org/10.1016/j.apsusc.2018.08.146

Reference: APSUSC 40183

To appear in: Applied Surface Science

Received Date: 10 May 2018 Revised Date: 25 July 2018 Accepted Date: 18 August 2018

Please cite this article as: M. Carvalho Oliveira, J. Andrés, L. Gracia, M.S.M.P. de Oliveira, J.M.R. Mercury, E. Longo, I. Costa Nogueira, Geometry, electronic structure, morphology, and photoluminescence emissions of BaW_{1-x}Mo_xO₄ (x=0, 0.25, 0.50, 0.75, and 1) solid solutions: theory and experiment in concert, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.08.146

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Geometry, electronic structure, morphology, and photoluminescence emissions of $BaW_{1-x}Mo_xO_4$ (x=0, 0.25, 0.50, 0.75, and 1) solid solutions: theory and experiment in concert

Marisa Carvalho Oliveira^{a,b}, Juan Andrés^{a*}, Lourdes Gracia^c, Michelle Suzane M. P. de Oliveira^d, Jose Manuel R. Mercury^d, Elson Longo^b and Içamira Costa Noqueira^e

^aDepartamento de Química Física y Analítica, Universitat Jaume I, 12071 Castelló de la Plana, Spain;

^bCDMF-UFSCar, Universidade Federal de São Carlos, P.O. Box 676, 13565-905 São Carlos, SP, Brazil;

^cDepartamento de Química Física, Universitat de València, 46100 Burjassot, Spain;

dPPGEM-IFMA, Instituto Federal do Maranhão, CEP 65030-005, São Luís, MA, Brazil:

^eDepartamento de Física, UFAM, 3000-Japiim, Manaus, AM 69077-000, Brazil

Abstract

The design of a solid solution with tunable electro-optical properties and multifunctionality is a promising strategy for developing novel materials. In this work, BaW_{1-x}Mo_xO₄ (x=0, 0.25, 0.5, 0.75, and 1) solid solutions have been successfully prepared for the first time by a co-precipitation method. Their crystal structure and phase composition were determined by X-ray diffraction and Rietveld refinements. Fourier transform infrared and micro Raman spectroscopy in combination with field-emission scanning electron microscopy (FE-SEM) were used to describe the microstructures and chemical compositions of the synthesized materials. The influence of chemical composition on morphology and photoluminescence (PL) emission has been analyzed. The geometry, electronic structures, and morphologies of BaW₁₋ _xMo_xO₄ (x=0, 0.25, 0.5, 0.75, and 1) solid solutions were investigated by firstprinciples quantum-mechanical calculations based on the density functional theory. By using Wulff construction and the values of the surface energies for the (112), (001), (110), (101), (100), and (111) crystal faces, a complete map of the available morphologies for the BaW_{1-x}Mo_xO₄ solid solutions was obtained. These results show a qualitative agreement between the experimental morphologies obtained using the FE-SEM images and the computational models. The substitution of W⁶⁺ by Mo⁶⁺ enhances the electron-transfer process due to a stronger Mo(4d)-O(2p) hybridization compared to W(5d)-O(2p) for the W/Mo-O superficial bonds, and is responsible for the change in morphology from BaWO₄ to BaMoO₄. Such a fundamental study, which combines multiple experimental methods and first-principles calculations, has provided valuable insight into obtaining a basic understanding of the local structures, bonding, morphologies, band gaps, and electronic and optical properties of the BaW₁- $_{x}Mo_{x}O_{4}$ (x=0, 0.25, 0.5, 0.75, and 1) solid solutions.

1. Introduction

Alkaline earth molybdate and tungstate ($AMoO_4$ and AWO_4 , A = Ba, Sr, or Ca) are inorganic compounds having the scheelite-type ABO_4 structure, and exhibit interesting properties for a wide range of applications such as

Download English Version:

https://daneshyari.com/en/article/10141444

Download Persian Version:

https://daneshyari.com/article/10141444

<u>Daneshyari.com</u>