A novel molecularly imprinted sensing platform based on MWCNTs/AuNPs decorated 3D starfish like hollow nickel skeleton as a highly conductive nanocomposite for selective and ultrasensitive analysis of a novel pan-genotypic inhibitor velpatasvir in body fluids

Mohamed M. El-Wekil, Ashraf M. Mahmoud, Adel A. Marzouk, Saad A. Alkahtani, Ramadan Ali

PII: DOI: Reference:	S0167-7322(18)32760-0 doi:10.1016/j.molliq.2018.08.105 MOLLIQ 9550
To appear in:	Journal of Molecular Liquids
Received date:	27 May 2018
Revised date:	13 August 2018
Accepted date:	18 August 2018

Please cite this article as: Mohamed M. El-Wekil, Ashraf M. Mahmoud, Adel A. Marzouk, Saad A. Alkahtani, Ramadan Ali , A novel molecularly imprinted sensing platform based on MWCNTs/AuNPs decorated 3D starfish like hollow nickel skeleton as a highly conductive nanocomposite for selective and ultrasensitive analysis of a novel pangenotypic inhibitor velpatasvir in body fluids. Molliq (2018), doi:10.1016/j.molliq.2018.08.105

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A novel molecularly imprinted sensing platform based on MWCNTs/AuNPs

decorated 3D starfish like hollow nickel skeleton as a highly conductive

nanocomposite for selective and ultrasensitive analysis of a novel pan-genotypic

inhibitor velpatasvir in body fluids

Mohamed M. El-Wekil^{*1}, Ashraf M. Mahmoud^{1,2}, Adel A. Marzouk³, Saad A. Alkahtani⁴, Ramadan Ali⁵

¹ Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
²Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Kingdom of Saudia Arabia
³ Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al Azhar University, Assiut, Egypt.
⁴Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudia Arabia
⁵ Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al Azhar University, Assiut, Egypt.

* Corresponding author: mohamed.mohamoud@ymail.com

SCR SCR

1

Download English Version:

https://daneshyari.com/en/article/10141494

Download Persian Version:

https://daneshyari.com/article/10141494

Daneshyari.com