Accepted Manuscript

Prediction of the critical properties of mixtures based on group contribution theory

S0167-7322(18)32235-9
doi:10.1016/j.molliq.2018.08.048
MOLLIQ 9493
Journal of Molecular Liquids
29 April 2018
29 June 2018
8 August 2018

Please cite this article as: Maogang He, Chengjie Wang, Junshuai Chen, Xiangyang Liu, Prediction of the critical properties of mixtures based on group contribution theory. Molliq (2018), doi:10.1016/j.molliq.2018.08.048

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Prediction of the critical properties of mixtures based on group
contribution theory
Maogang He*, Chengjie Wang, Junshuai Chen, Xiangyang Liu
MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an,
Shaanxi 710049, PR China
Abstract: A new simple model was proposed to predict the critical temperature (T_c) and critical
pressure (p_c) of mixtures based on group contribution (GC) theory. In this model, the critical
properties of mixtures can be predicted without critical parameters of each component. The
experimental critical temperatures of 169 compounds and 379 binary mixtures as well as
experimental critical pressures of 152 compounds and 188 binary mixtures were used to determine
the group contribution parameters and model parameters. The average absolute relative deviations
(AARDs) of correlation for compounds are 0.54% for T_c and 2.19% for p_c . AARDs of correlation
for binary mixtures are 1.22% and 4.54% for T_c and p_c , respectively. The predictive ability of
presented model was evaluated with T_c of 42 binary mixtures and 12 ternary mixtures as well as p_c
of 8 binary mixtures and 12 ternary mixtures; predicted results agree well with experimental
critical properties.
Keywords: critical temperature; critical pressure; group contribution; mixtures
1. Introduction
The critical properties including critical temperature, critical pressure, and critical volume are
one of the most important thermophysical properties of fluids, which play a vital role in the

22 development of equations of state [1, 2]. Additionally, they are essential parameters in many

21

description of phase behavior of mixtures, prediction of other physical parameters and

Download English Version:

https://daneshyari.com/en/article/10141546

Download Persian Version:

https://daneshyari.com/article/10141546

Daneshyari.com