Accepted Manuscript

Title: Facile Morphology Controllable Synthesis of PtPd Nanorods on Graphene-Multiwalled Carbon Nanotube Hybrid Support as Efficient Electrocatalysts for Oxygen Reduction Reaction

Authors: Kang Fu, Yang Wang, Linchang Mao, Xiaoxiao

Yang, Junhong Jin, Shenglin Yang, Guang Li

PII: S0025-5408(18)31895-6

DOI: https://doi.org/10.1016/j.materresbull.2018.08.043

Reference: MRB 10164

To appear in: *MRB*

Received date: 18-6-2018 Revised date: 6-8-2018 Accepted date: 28-8-2018

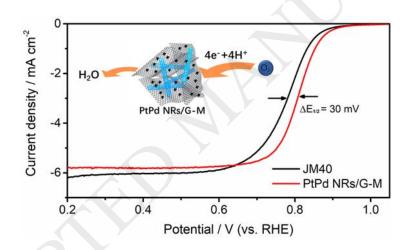
Please cite this article as: Fu K, Wang Y, Mao L, Yang X, Jin J, Yang S, Li G, Facile Morphology Controllable Synthesis of PtPd Nanorods on Graphene-Multiwalled Carbon Nanotube Hybrid Support as Efficient Electrocatalysts for Oxygen Reduction Reaction, *Materials Research Bulletin* (2018), https://doi.org/10.1016/j.materresbull.2018.08.043

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Facile Morphology Controllable Synthesis of PtPd Nanorods on Graphene-Multiwalled Carbon Nanotube Hybrid Support as Efficient Electrocatalysts for Oxygen Reduction Reaction

Kang Fu, Yang Wang, Linchang Mao, Xiaoxiao Yang, Junhong Jin, Shenglin Yang, Guang Li*


State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China

* Corresponding author. Tel.: +86 21 67792830; fax: +86 21 67792855.

E-mail: lig@dhu.edu.cn.

Author. Tel.: +86 21 67792798, E-mail: fuk 1992@126.com.

Graphitic abstract

Highlights

- G-M hybrid was prepared by a novel modified Hummers method followed by thermal annealing.
- G-M was verified to be more efficient as the electrocatalyst support compared with G.
- Ultrathin PtPd alloy nanorods were supported on the G-M hybrid.
- The electrochemical activity of PtPd NRs/G-M outperforms the commercial Pt/C.

Abstract

One-dimensional (1D) anisotropic platinum-based nanorods are particularly attractive electrocatalysts for oxygen reduction reaction (ORR) owing to the inherent structural advantages. In this work, we report the growth of ultrathin PtPd alloy nanorods (3-4 nm) on Graphene-Multiwalled carbon nanotube (G-M) hybrid support via a facile surfactant-free and template-free method as the efficient electrocatalyst for ORR. The

Download English Version:

https://daneshyari.com/en/article/10141821

Download Persian Version:

 $\underline{https://daneshyari.com/article/10141821}$

Daneshyari.com