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A B S T R A C T

The mobility of dislocations is an important factor in understanding material strength. Dislocations experience a drag due to their interaction with the crystal
structure, the dominating contribution at high stress and temperature being the scattering off phonons due to phonon wind. Yet, the velocity dependence of this effect
has eluded a good theoretical understanding. In a previous paper, dislocation drag from phonon wind as a function of velocity was computed from first principles in
the isotropic limit, in part for simplicity, but also arguing that macroscopically, a polycrystalline metal looks isotropic. However, since the single crystal grains are
typically a few microns up to a millimeter in size, dislocations travel in single crystals and cross boundaries, but never actually see an isotropic material. In this work
we therefore highlight the effect of crystal anisotropy on dislocation drag by accounting for the crystal and slip plane geometries. In particular, we keep the phonon
spectrum isotropic for simplicity, but dislocations are modeled according to the crystal symmetry (bcc, fcc, hcp, etc.). We then compare to the earlier purely isotropic
results, as well as to experimental data and MD simulations where they are available.

1. Introduction

A fundamental problem in the dynamic response of solid metals are
the mechanisms contributing to the so-called drag coefficient of dis-
locations under high stresses and strains: Moving dislocations (curvi-
linear defects in the crystal structure of the metal) experience a drag
due to their interaction with the crystal structure, and represent a major
factor in the understanding of material strength. Hence, many dis-
location based material strength models require the dislocation drag
coefficient B as one of their input parameters (typically determining the
dislocation glide time between obstacles), see e.g. Refs. [1–7]. B is
usually assumed to be a constant (or a constant over a simple “re-
lativistic” factor) as a fist order approximation. Hence, more insight
into the true functional form of this drag coefficient could improve
those models.

Several mechanisms contribute to the dislocation drag, and de-
pending on the temperature, pressure and dislocation-velocity (or
stress) regime, different mechanisms dominate [8,9]. For example, at
low stresses, the dislocation mobility is limited by various potential
barriers within the crystal. Such obstacles can be overcome by a dis-
location either by thermal activation (if the temperature is high en-
ough) or by high enough stress levels. When the stress level becomes
“critical”, i.e. high enough to easily overcome the highest potential
barrier, the dislocation drag becomes viscous in character, and a sig-
nificant change in the stress-velocity dependence from non-linear to

approximately linear takes place. In this high stress regime, where ty-
pical dislocation speeds are within a few percent of transverse sound
speed, the dominating contribution to the dislocation drag coefficient
(at temperatures around and above the Debye temperature) is the dis-
sipative effect1 of scattering off phonons (“phonon wind”).

The theory of phonon wind has a long history, being pioneered by
Leibfried and others [10–14], significantly improved from first princi-
ples by Alshits and collaborators [15–17], and was nicely reviewed in
Refs. [8,9] (which may also be consulted for additional references). Due
to the simplicity of Leibfrieds expression for dislocation drag
(B∼const. T× ), which represents the limit of high temperature T and
small dislocation velocity in an isotropic continuum, it is still used
today (despite its limitations) as an empirical fitting function to extract
information on dislocation mobility from discrete lattice simulations
[18–20]. In these examples, the additional damping in the high velocity
regime is then accounted for empirically by adding a T-independent
term which grows like v above some threshold velocity v v0> , and
which is based on Eshelby's arguments [21] for screw dislocations in an
isotropic continuum supplemented by an anisotropic dispersion rela-
tion. The latter term is in stark contrast to the “relativistic” factors

v c1/(1 / )m2 2∝ − with different exponents m and a limiting (sound)
speed c introduced by many authors (see e.g. Refs. [1,2,6,7] among
others) based on equally empirical arguments. Thus, a better under-
standing of dislocation drag from first principles at high velocities and
for arbitrary crystal geometries is clearly needed.
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1 Other dissipative effects, which we do not touch upon in this paper as they are subleading in the regimes we are interested in, are the so-called thermoelastic

damping, the flutter effect, and the radiation damping, see Ref. [8] for details.
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For a wide range of velocities (already starting at low velocities
where phonon wind is a subleading effect), the contribution to the drag
coefficient due to phonon wind is roughly constant. However, at very
high velocities (i.e. more than a few percent of sound speed) the drag
coefficient due to phonon wind becomes velocity dependent, indicating
once more a non-linear stress-velocity dependence, and it is this regime
we are primarily interested in here.

Existing continuum models of dislocation drag due to phonon wind
[9] assume that the dislocation velocity is much smaller than the speed of
sound in the material, and do well in describing the viscous regime.
However, for materials under high stress this assumption must be re-
examined for a more realistic calculation of the dislocation drag coeffi-
cient, including its velocity dependence. As a first step we study the
velocity dependence in the subsonic regime, and intend to extend the
theory to include dislocations moving at transonic and supersonic speeds
in future work. The motivation for the latter comes from recent MD si-
mulations and experiments which indicate the existence of dislocations
moving at supersonic speeds — at least in certain materials such as
plasma crystals [22], see also [18,23–29] and references therein.

In a previous paper [30], dislocation drag from phonon wind (from
purely transverse phonons) was computed in the isotropic limit, mainly
for simplicity, thereby generalizing the earlier models described in Ref.
[9] to higher velocities. However, since the single crystal grains are
typically a few microns up to a millimeter in size, dislocations travel in
single crystals and occasionally cross boundaries, but never actually see
an isotropic material. The purpose of the present paper is therefore to
highlight the effect of crystal anisotropy on the dislocation drag coef-
ficient from phonon wind by accounting for the crystal and slip plane
geometries. As a first step towards a more sophisticated model, we keep
the phonon spectrum isotropic for simplicity, but dislocations are
modeled according to the crystal symmetry (bcc, fcc, hcp, etc.). We then
compare to the purely isotropic results (now including also longitudinal
phonons and thus generalizing [30]), seeing some deviations especially
at high velocity, but even at small velocities for some materials. For the
isotropic limit we use experimental polycrystalline elastic constant
data. These deviations are expected since the present “semi-isotropic”
approximation is able to capture features which are lost in the purely
isotropic limit, such as the dislocation character dependence. Ad-
ditionally the uncertainties in the experimental determination of elastic
constants (both single and polycrystalline) — especially at third order
— might also contribute to the deviations seen between the two
methods for pure screw and edge dislocations at low velocity. In the
high velocity regime, the observed large deviations between the two
methods are expected since the position of divergences in the disloca-
tion displacement gradient fields depends on the crystal geometry [31].

The outline of this paper is as follows: In Section 2 we start by re-
viewing the phonon wind contribution to the drag coefficient in the
continuum approximation, following Ref. [30] for the purely transverse
phonons, and subsequently generalizing to include also longitudinal
phonons in Section 2.3. We then explain how to generalize the model to
include anisotropic crystals, albeit assuming for simplicity an isotropic
phonon spectrum. In Section 2.4 we then review the method of deriving
the displacement gradient field of a dislocation moving at constant
(sub-sonic) velocity and define the slip systems considered in the pre-
sent case; see Refs. [31,32] and references therein for details. Finally, in
Section 3 we present our results for dislocation drag in various metals of
cubic, hexagonal, and tetragonal symmetry, and compare them to
earlier experimental data, MD simulations, as well as our previous
(more crude) purely isotropic model of [30], albeit now including also
longitudinal phonons.

2. The phonon wind contribution to the drag coefficient

2.1. General considerations

In this work, we consider the harmonic approximation (where

displacements are small compared to the lattice spacings) and take the
continuum limit. We are interested in the interaction of phonons with a
single moving dislocation in a crystal. Details of the derivation of the
according Hamiltonian in the continuum description can be found in
Ref. [30] — see also [9] and references therein for earlier work on this
theory. Hence our starting point is the following Hamiltonian2:
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consisting of the usual kinetic part for the phonons H0 and the inter-
action between phonons and the dislocation H′. Following Ref. [9] we
used the shorthand notation (or super-indices) q q s: { , }′ = → ′ ; hence

q qΓ : Γ ( , )q q s s= → →
′ ″ ′ ″ . Note that differences of super-indices mean the fol-

lowing: ξ ξ:q q q q s s,=′− →−→ ′− and ξ a aq s q s q s,
†= +→ →
−→ . The phonon polariza-
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*−→ = →

and q s q s δw w( , ) ( , )i i i ss
*∑ → → ′ = ′ (orthonormality). The dimensionless

phonon creation and annihilation operators satisfy the standard com-
mutation relations
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and all others vanishing. An important point to note here, is that we
use, as an approximation, the isotropic Debye phonon spectrum using
the effective Lamé constants of the polycrystal, i.e. “transverse” pho-
nons are assumed to travel with a transverse sound speed computed
from the effective polycrystalline shear modulus μ.

Our Hamiltonian (2.1) describes the interaction of phonons with
(edge and screw) dislocations along the z-axis, moving with velocity v
in the x-direction, and depending on the two-dimensional wave vector
q q ϕ q ϕ( cos , sin )→ = of the dislocation. The field of displacement
gradients due to the dislocation (in Fourier space) is denoted here by
d q ϕ( , )kk′ and we will derive expressions for moving edge, screw, and
mixed dislocations in Section 2.4. The phonon wave vectors q→, q→ lie in
the first Brillouin zone and thus the dislocation wave vector satisfies
q q q q2 BZ
→ = → − → ≤ due to momentum conservation. For the edge of
the Brillouin zone, we estimate qBZ in such a way that it represents the
radius of a sphere whose volume equals the unit cell volume in Fourier
space, i.e. q π V6 /BZ

2
c

3= where Vc denotes the volume of a unit cell.
Furthermore, ρ denotes the material density and the coefficients

Aijk
i j k∼ ′ ′ ′

depend on second and third order elastic constants (SOEC and
TOEC), Cii jj′ ′ and Cii jj kk′ ′ ′, via [33,34].
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The drag coefficient (or damping/friction “constant”) B of a dis-
location is defined as the proportionality coefficient of the force F
needed to maintain dislocation velocity v. It is related to the dissipation
D per unit length via D Bv2= , which in turn is straightforwardly de-
rived from the probability Wq q′ ″ of the scattering of a phonon from state
q′ to state q″ per unit time, see Refs. [14,17]. Multiplying Wq q′ ″ by the
equilibrium phonon distribution function n ω k T(exp(ℏ / ) 1)q q B

1= −′ ′ −

yields the number of transitions per unit time. Taking into account that
an energy ω ωℏ( ) ℏΩq q q− =′ ″ is transferred for every transition, one
finds for the dissipation per unit time and per unit dislocation length,
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where momentum conservation q q q→ = → − → is implicit so as to avoid
clutter in the notation. The same expression can be derived from a one-

2 Essential steps in deriving this expression are briefly outlined in Appendix
A, albeit we refer the interested reader to Refs. [9,30] for further details.
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