# Accepted Manuscript

Title: Photocatalytic rendition of  $Zn^{2+}$ -doped  $Bi_2O_3$  nanoparticles

Authors: G. VIRUTHAGIRI, P. KANNAN, N. SHANMUGAM



| PII:             | S1569-4410(17)30203-1                                        |
|------------------|--------------------------------------------------------------|
| DOI:             | https://doi.org/10.1016/j.photonics.2018.05.008              |
| Reference:       | PNFA 656                                                     |
| To appear in:    | Photonics and Nanostructures – Fundamentals and Applications |
| Received date:   | 14-7-2017                                                    |
| Revised date:    | 3-5-2018                                                     |
| Accepted date:   | 21-5-2018                                                    |
| Please cite this | article as: VIRUTHAGIRI G P K SHANMUGAM                      |

Please cite this article as: VIRUTHAGIRI SHANMUGAM К, Zn<sup>2+</sup>-doped N, Photocatalytic rendition of Bi<sub>2</sub>O<sub>3</sub> nanoparticles, Photonics and Nanostructures - Fundamentals and Applications (2018), https://doi.org/10.1016/j.photonics.2018.05.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

# ACCEPTED MANUSCRIPT

## Photocatalytic rendition of Zn<sup>2+</sup>-doped Bi<sub>2</sub>O<sub>3</sub> nanoparticles

#### \*G.VIRUTHAGIRI <sup>a</sup>, P. KANNAN <sup>b</sup> N.SHANMUGAM<sup>c</sup>

<sup>\*a, c</sup> Department of Physics, Annanmalai University, Annanmalai Nagar, Tamil Nadu, India

<sup>b</sup> R & D center, Department of Physics, Bharathiar University, Coimbatore, TamilNadu, India.

#### Email:gvgiri2002@gmail.com

#### Highlights

- Undoped and Zn-doped  $\alpha$ -Bi<sub>2</sub>O<sub>3</sub> were synthesized.
- A relatively small particle size of inorganic Zn was used as an additive with  $\alpha$ -Bi<sub>2</sub>O<sub>3</sub>.
- The 0.15 M sample exhibited the highest photocatalytic activity (twice) compared to that of undoped Bi<sub>2</sub>O<sub>3</sub>.
- Enhancement of activities was due to the effective charge separation.
- XRD, UV-Vis, FTIR, PL, FESEM with EDAX, and HR-TEM analyses were investigated.
- XRD confirmed that the synthesized products were crystalline in nature with a monoclinic crystal structure.
- UV-Vis analysis showed that emission at the visible region indicates increasing optical property.

### Abstract

The present work analyzes the photocatalytic activity of  $Bi_2O_3$  in the pure and  $Zn^{2+}$ -doped forms in the degradation of the organic dye methylene blue (MB) under solar light irradiation. For this study, nanoparticles of bismuth oxide ( $Bi_2O_3$ ) and different levels of  $Zn^{2+}$ -doped  $Bi_2O_3$  were prepared by a simple chemical precipitation method. The phase form of  $Bi_2O_3$  is confirmed by X-ray diffraction. The optical properties of the samples were studied by UV-Vis-Diffuse Reflectance spectroscopy and photoluminescence. The morphologies of the products were Download English Version:

https://daneshyari.com/en/article/10141909

Download Persian Version:

https://daneshyari.com/article/10141909

Daneshyari.com