
Author's Accepted Manuscript

Biaxial creep performance of CWSR Zircaloy-4 cladding at emulated off-normal conditions of interim dry storage facility

Kuan-Che Lan, Hsiao-Ming Tung, Yinbin Miao, James F. Stubbins

www.elsevier.com/locate/msea

PII: S0921-5093(18)31181-X

DOI: https://doi.org/10.1016/j.msea.2018.08.102

Reference: MSA36873

To appear in: Materials Science & Engineering A

Received date: 31 May 2018 Revised date: 27 August 2018 Accepted date: 28 August 2018

Cite this article as: Kuan-Che Lan, Hsiao-Ming Tung, Yinbin Miao and James F. Stubbins, Biaxial creep performance of CWSR Zircaloy-4 cladding at emulated off-normal conditions of interim dry storage facility, *Materials Science & Engineering A*, https://doi.org/10.1016/j.msea.2018.08.102

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Biaxial creep performance of CWSR Zircaloy-4 cladding at emulated off-normal conditions of interim dry storage facility

Kuan-Che Lan^{a,*}, Hsiao-Ming Tung^b, Yinbin Miao^c, James F. Stubbins^a

^aDepartment of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

^b Institute of Nuclear Energy Research, Longton, Taoyuan 32546, Taiwan, ROC
^c Chemical and Fuel Cycle Technologies Division, Argonne National Laboratory, Lemont, IL
60439, USA

Abstract

Biaxial creep hebavior of hydrided Zircaloy-4 cladding was tested at 500°C. Creep-life was inversely proportional to H-concentration up to 750 wppm. The weakening through hydride reorientation of hydrided specimens was not observed by optical microscopy. The power-law stress exponents and the TEM observation supported the high-temperature climb mechanism dominated the creep behavior in secondary stage.

Keywords: Zircaloy-4, creep, biaxial, hydride, dry storage

1. Introduction

Low-temperature creep rupture of used nuclear fuel (UNF) cladding is regarded as a possible failure mechanism during long-term dry storage. The creep stress induced by the fission products and decay heat from the fuel dominates UNF's creep behavior. UNF hoop stress is regulated to <90 MPa with its cladding temperature <400°C for interim dry storage under normal operation [1]. For short-term off-normal and accident conditions, the maximum cladding temperature at a temperature below 570°C is allowed [1].

Email address: kuanche.lan@gmail.com (Kuan-Che Lan)

^{*}Corresponding author

Download English Version:

https://daneshyari.com/en/article/10142070

Download Persian Version:

https://daneshyari.com/article/10142070

Daneshyari.com