Accepted Manuscript

Device characteristics of Schottky barrier diodes using In-Ga-Zn-O semiconductor thin films with different atomic ratios

Jae-Won Kim, Tae-Jun Jung, Sung-Min Yoon

PII: S0925-8388(18)33184-0

DOI: 10.1016/j.jallcom.2018.08.289

Reference: JALCOM 47377

To appear in: Journal of Alloys and Compounds

Received Date: 24 April 2018

Revised Date: 27 August 2018

Accepted Date: 28 August 2018

Please cite this article as: J.-W. Kim, T.-J. Jung, S.-M. Yoon, Device characteristics of Schottky barrier diodes using In-Ga-Zn-O semiconductor thin films with different atomic ratios, *Journal of Alloys and Compounds* (2018), doi: 10.1016/i.jallcom.2018.08.289.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Device characteristics of Schottky barrier diodes using In-

Ga-Zn-O semiconductor thin films with different atomic

ratios

Jae-Won Kim, Tae-Jun Jung, and Sung-Min Yoon

Department of Advanced Materials Engineering for Information and Electronics,

Kyung Hee University, Yongin-shi, Gyeonggi-do 17104, Korea

Electronic mail: (*)sungmin@khu.ac.kr

ABSTRACT

Oxide semiconductor Schottky barrier diodes (SBDs) were fabricated by using

amorphous In-Ga-Zn-O (IGZO) semiconducting thin films with different atomic ratios.

Higher rectification ratios and Schottky barrier heights (SBHs) were obtained when the

oxygen partial pressure was high during the sputtering deposition of the IGZO films.

The increase in Ga composition effectively enhanced the device characteristics,

including the rectification ratio and the SBH of the SBDs. These properties were closely

related to the control of oxygen vacancy concentration within the IGZO and the

resulting conduction behaviors owing to Fermi-level pinning and tunneling current

through the Schottky barrier. The fabricated SBD using IGZO with a higher Ga

composition (In:Ga:Zn=1.0:0.8:0.3) exhibited a rectification ratio of 8.3×10^6 and an

SBH of 0.79 eV.

Keywords: Oxide semiconductor, Schottky junction, Schottky barrier diode, In-Ga-Zn-

1

Download English Version:

https://daneshyari.com/en/article/10142232

Download Persian Version:

https://daneshyari.com/article/10142232

<u>Daneshyari.com</u>