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A B S T R A C T

Unit cells lack of symmetry are difficult to determine accurately, compared to high-symmetry unit cells with
many constraints. The electron backscatter diffraction (EBSD) technique in scanning electron microscopy (SEM)
was considered inadequate for this task because of the highly defective band detections. We develop a new
method for the Kikuchi-band detections, which can improve the accuracy of the EBSD technique in determining
the lattice constants of totally unknown Bravais unit cells with low symmetry. The results show that, under ideal
conditions (i.e., low-noise EBSD patterns and known projection center), the relative error of the unit-cell con-
stants (a, b, c) is less than 0.3%, and that of the axial ratios (a/b, b/c, c/a) is less than 0.5%. The absolute errors of
the inter-axial angles (α, β, γ) and crystal orientations are about 0.1°. Our method is perhaps not as accurate as
the classical techniques such as X-ray diffraction, but is demonstrated as a practical tool for crystallographic
characterization especially on low-fraction phases, and could be easily incorporated into an SEM to make the
most of the SEM in the area of microanalysis.

1. Introduction

Crystals are built up by an orientational stacking of very small
regular ‘brick-like’ unit cells. Edges of the unit cells are considered to be
parallel to the three axial vectors (→a ,

→
b ,→c ) of the seven crystal systems

which are subdivided into 14 Bravais-lattice types according to dif-
ferent symmetries. In general, lattice constants are sensitive to a variety
of external and internal conditions, such as temperature, stress, che-
mical composition, etc. Accurate determination of the Bravais unit cells
(including their symmetries and lattice constants) is prerequisite to
phase identification, calculating the atomic distance and bond energy,
and analyzing the relations between lattice constants and various
physical/chemical properties.

However, accurate determination of the Bravais unit cells is not
trivial even for the cubic system with many symmetry constraints, and
it becomes more difficult for the low-symmetry crystal systems, espe-
cially the triclinic one [1–3]. For the crystalline materials with low
symmetries, their crystal structures are generally complex and often
accompanied by relatively poor crystalline perfection with residual
stress and fine grain size. These characteristics make their diffraction
patterns complicated and any tiny error or mishandling in the data
processing will severely impact the accuracy and reliability of the final
determination results [4,5]. Take the X-ray diffraction (XRD) technique

as an example, the best accuracy of measuring the lattice constants for
cubic system is about 0.0005%, which is close to the accuracy of
measuring the X-ray wavelength and thus is possibly so far the limit of
measuring lattice constants [6,7]. In ordinary cases, the measurement
accuracy for cubic system is about 0.002% [8,9]. For triclinic system,
however, the best accuracy, under the condition of no systematic errors
(e.g., instrumental misalignment, incident beam divergence, off-center
specimen, specimen absorption, etc.), is 0.01% [10], one order of
magnitude lower than that for cubic system. In practical measurement,
it is, of course, not free from sources of the systematic errors. As a re-
sult, the measurement accuracy for triclinic system deteriorates even
further to about 0.3% [10], two orders of magnitude lower than the
ordinary cases for cubic system.

Given the above accuracies of the XRD technique, it is still chal-
lenging to characterize the phases with a low fraction because of their
insufficient X-ray diffraction signals. In this case, the popular alter-
native technique is the transmission electron microscopy (TEM). But it
requires time-consuming sample thinning and sometimes may not be
readily available.

Nowadays, electron backscatter diffraction (EBSD) technique in
scanning electron microscopy (SEM) is comparatively widespread for
microanalysis. It is a locally resolving technique that enables a com-
bination of the microstructural and orientational characterizations,
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such as morphology and texture based on orientational analysis of
known crystals. It nonetheless has an unfavorable reputation of being
too inaccurate to measure the lattice constants reliably. For lattice-
constant determination, EBSD's best accuracy is considered to be 5%,
and the error of the data directly extracted from EBSD patterns may be
up to 20%, because of the normally vague diffraction patterns and the
highly defective band detections [3,11].

In our previous works, a reliable three-dimensional reconstruction
procedure was reported, which involved as many as possible Kikuchi
bands that were visible in an EBSD pattern and built a system of
equations (tens of thousands of) for a least-squares solution in order to
over-determine the unknown unit cells by using a single EBSD pattern
[12–16]. The corresponding determination error was confined mainly
by building the overdetermined system of equations. Although the
obtained accuracy (about 1% for lattice constants [17]) is reasonably
high, the adopted band-detection method remains inherently un-
satisfying and the accuracy was derived only from cubic and tetragonal
unit cells. In this work, we propose an improved method for the Ki-
kuchi-band detections, which utilizes the crystallographic information
extracted from an EBSD pattern to further confine the determination
error. Then we apply this new method to determine low-symmetry unit
cells. The obtained accuracies for materials with triclinic unit cells are
better than 0.3% for both the unit-cell constants (a, b, c) and the axial
ratios (a/b, b/c, c/a), better than 0.3° for the inter-axial angles (α, β, γ),
and 0.1° for crystal orientations. This is significantly better than the
previous accuracy we achieved on high-symmetry cubic or tetragonal
materials, demonstrating the great potential of our method for structure
determination on SEM.

2. Geometric crystallography of EBSD

EBSD signals emitted from an effective point source inside a crystal
sample are gnomonically projected onto a flat screen of the EBSD de-
tector, recording a two-dimensional Kikuchi diffraction pattern. In this
three-dimensional configuration of gnomonic projection, the ratio be-
tween the specimen-to-screen distance and the height of the Kikuchi
pattern is defined as the detector distance (according to a definition by
the Bruker Corporation), which affects the pattern's angular coverage φ
(Fig. 1a). Typically, an EBSD pattern covers an angle φ in the range of
70–100°. A point in the two-dimensional pattern with the shortest
distance to the emitting source (i.e., projection center) is usually called
the pattern center.

From the crystallographic point of view, a single EBSD pattern
provides abundant information about the crystalline phase (including
its real and reciprocal unit cells). To be specific, in an EBSD pattern tens
of Kikuchi bands represent the electron diffraction signals of lattice

planes (hkl)i. The widths of bands decide the absolute values of the unit-
cell constants (a, b, c) according to Bragg's equation =d θ nλ2 sinhkl i( ) ,
where θi is approximately proportional to the width of a Kikuchi band
(Fig. 1b). These Kikuchi bands intersect each other, forming hundreds
of Kikuchi poles, namely, zone axes [uvw]m: × =hkl hkl uvw( ) ( ) [ ]i j m,
with hu+ kv+ lw=0. Here, the indices of h, k, l, and u, v, w, are all
integers, which means that all bands and poles showing visible Bragg
diffraction contrast within the angular coverage of an EBSD pattern
have integer Miller indices which are free of errors. The positions of the
diffracting-plane traces and zone axes together with the projection
center depend on inter-axial angles (α, β, γ), axial ratios (a/b, b/c, c/a),
and crystal orientations (e.g., the three Euler angles, Z, X, Z). The
widths of the Kikuchi bands are associated with the magnitude of lattice
constants. The success (including high accuracy and high reliability) of
determining the Bravais unit cells based on the EBSD technique is
therefore strongly dependent on the accuracy and precision of the
adopted band-detection method. In particular, correctly locating the
traces and describing the band widths of diffracting lattice planes are of
critical importance.

Unfortunately, it is difficult to accurately determine the traces and
widths in an EBSD pattern. Owing to the gnomonic projection (Fig. 1),
the two edges of each band have a hyperbolic shape, and its width is
approximately proportional to twice the Bragg angle (2θi) of a dif-
fracting lattice plane (hkl)i. The trace of a diffracting lattice plane(hkl)i,
which is an invisible line of intersection between the (hkl)i plane and
the Kikuchi pattern, is not coincident with the center line of corre-
sponding hyperbola-shaped Kikuchi band, as illustrated in Fig. 1b. The
maximum deviation between a center line and corresponding trace
appears to be only few image pixels (about 0.1° within the angular
coverage φ shown in Fig. 1a) and hence difficult to notice in an EBSD
pattern. Such inaccuracy in trace positions may not affect the directions
of the traces and the angles between them, but will cause considerable
errors in the locations of zone axes as well as the following unit-cell
determination.

With respect to the widths of Kikuchi bands, it is also difficult to
perform an accurate measurement in an EBSD pattern because the in-
tensity profiles of the diffraction bands are complex [18]. Thus the
lattice spacing d(hkl) ( ∝−d θhkl i( )

1 ) obtained from measurement of the band
widths tends to be rather imprecise (with error up to 20%). In con-
sequence, using the erroneously measuredd(hkl), a poorly defined re-
ciprocal primitive cell will be reconstructed, which eventually leads to
an inaccurate and unreliable determination of the real unit cell.

In spite of the aforesaid unfavorable features of EBSD patterns, ac-
curate determination of the traces and band widths is still achievable.
For example, a large amount of zone axes in a single EBSD pattern can
be accurately determined (which is why the EBSD technique is widely
accepted for accurate crystal orientation analyses). Moreover, if gno-
monic distortion of the EBSD pattern was corrected and also the pattern
center, detector distance and crystal orientation were accurately
known, all trace positions can be correctly calculated. The deviation
between the trace and the center line of a hyperbola-shaped band be-
comes obvious for high-order Kikuchi bands.

Nevertheless, in the case of experimental pattern analysis, the pat-
tern center and detector distance are difficult to determine with high
accuracy [5,19], and not every Kikuchi band shows a high-order fea-
ture. In view of these practical reasons (e.g., inaccurate or even un-
known projection center), our routine of determining the band edges
(or measuring band widths) is mainly composed of two stages.

At the initial stage, we perform measurement with a recorded or
estimated pattern center and detector distance (their detailed estima-
tion process will be introduced in the next section). Hence, an ap-
proximation is made, i.e., the trace and center line are regarded as
being coincident (only for initial Kikuchi band detection).
Subsequently, we can use a pair of parallel lines and their center line to
approximate the hyperbolic band edges and the corresponding trace,
respectively. Here the band width wi (marked by two arrows in Fig. 1b)

Fig. 1. Geometric crystallography of the EBSD: (a) Three-dimensional config-
uration of the gnomonic projection; (b) Discrepancy between the trace (green)
of a diffracting lattice plane (hkl) and the center line (red) of a hyperbola-
shaped Kikuchi band. The plane (hkl) bisects the angle 2θi. wi is the band width.
O and O’ are the pattern center and the source, respectively. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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