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ON NONEXISTENCE OF KNESER SOLUTIONS OF THIRD-ORDER

NEUTRAL DELAY DIFFERENTIAL EQUATIONS

J. DŽURINA, S. R. GRACE, AND I. JADLOVSKÁ

Abstract. The aim of this paper is to complement existing oscillation results for
third-order neutral delay differential equations by establishing sufficient conditions
for nonexistence of so-called Kneser solutions. Combining newly obtained results
with existing ones, we attain oscillation of all solutions of the studied equations.

1. Introduction

Consider the third-order neutral delay differential equation of the form
(
r2

(
r1y
′)′)′ (t) + q(t)x(σ(t)) = 0, t ≥ t0 > 0, (1.1)

where y(t) := x(t) + p(t)x(τ(t)). Throughout the paper, we will assume that

(H1) σ, τ ∈ C1([t0,∞),R), σ(t) < t, τ ′ ≥ τ0 > 0, and lim
t→∞

τ(t) = lim
t→∞

σ(t) =∞;

(H2) p, q ∈ C([t0,∞), [0,∞)), 0 ≤ p(t) ≤ p0 <∞ and q does not vanish identically;
(H3) r1, r2 ∈ C([t0,∞), (0,∞)) satisfy

∫∞
r−1
1 (t)dt =

∫∞
r−1
2 (t)dt =∞;

and either

(H4a) τ(t) ≤ t and τ ◦ σ = σ ◦ τ ;

or

(H4b) τ(t) > t, σ′ > 0 and
(
σ−1(t)

)′ ≥ σ0 > 0.

For the sake of brevity, we define the operators

L0y = y, L1y = r1y
′, L2y = r2

(
r1y
′)′ , L3y =

(
r2

(
r1y
′)′)′ .

By a solution to equation (1.1), we mean a nontrivial function x ∈ C([Tx,∞),R) with
Tx ≥ t0, which has the property y, L1y, L2y ∈ C1([Tx,∞),R), and satisfies (1.1) on
[Tx,∞). We only consider those solutions of (1.1) which exist on some half-line [Tx,∞)
and satisfy the condition sup{|x(t)| : T ≤ t <∞} > 0 for any T ≥ Tx.

As is customary, a solution x of (1.1) is said to be oscillatory if it is neither eventually
positive nor eventually negative. Otherwise, it is said to be nonoscillatory. The equation
itself is termed oscillatory if all its solutions oscillate.

Following classical results of Kiguradze and Kondrat’ev (see, e.g., [8]), we say that (1.1)
has property A if any solution x of (1.1) is either oscillatory or satisfies limt→∞ x(t) = 0.
Instead of using property A, some authors say that equation is almost oscillatory.

To start with, let us state a characterization of possible nonoscillatory, solutions of
(1.1). The following result is a modification of the well known Kiguradze lemma [8,
Lemma 1.1] based on (H3).

Lemma 1. Assume (H1)−(H3) and x is a nonoscillatory solution of (1.1). Then there
are only two possible classes for y:

N0 = {y(t) : (∃T ≥ t0)(∀t ≥ T ) (y(t)L1y(t) < 0, y(t)L2y(t) > 0)}
N2 = {y(t) : (∃T ≥ t0)(∀t ≥ T ) (y(t)L1y(t) > 0, y(t)L2y(t) > 0)} .
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