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A B S T R A C T

The problem of water wave scattering by an inclined thin plate submerged in the lower layer of a two-layer fluid
is examined here using linear theory. In a two-layer fluid, corresponding to a particular frequency wave pro-
pagates with two different wavenumbers. Thus we determine the reflection and the transmission coefficients and
the hydrodynamic force for both the wavenumbers. This leads to two separate problems. These problems are
solved using a hypersingular integral equation method. Several numerical results for the physical quantities
varying the inclination, depth and length of the plate are presented. Making suitable adjustment of the para-
meters published results for a vertical plate submerged in a single layer fluid are recovered.

1. Introduction

Investigation of wave scattering and radiation problems in a two-
layer fluid has been a subject of considerable attention. This is because,
in reality, an ocean may be considered as a stratified fluid. This stra-
tification which occurs vertically is due to change in temperature or
salinity of the water. Very often the change in density is confined to a
very thin layer of pycnocline above and below which the density is
practically constant. Thus the fluid can be effectively modeled as a two-
layer fluid consisting of an upper layer with less density and a lower
layer comprised of greater density.

Stokes [1] first analyzed the wave motion in a two-layer fluid. Lamb
[2] established that time-harmonic progressive waves can propagate
with two wave modes (numbers) – waves with a lower wave number
propagate along the free surface whilst those with a greater wave
number propagate along the interface. Linton and McIver [3] examined
the problem of wave interaction with horizontal cylinders in fluids
consisting of a finite upper layer and an infinite lower layer. This
problem was extended to three-dimensions by Cadby and Linton [4],
who studied wave radiation and diffraction by a sphere submerged in
either of the two-layer. Manam and Sahoo [5] studied wave scattering
by porous structures in a two-layer fluid using a generalized orthogonal
relation. Kashiwagi et al. [6] employed boundary integral equation
method to investigate the diffraction problem involving a body of
general shape and analyzed the relevant wave induced motion. Bhat-
tacharjee and Sahoo [7] developed an expansion formula and the re-
lated mode-coupling relations for studying wave problems in a two-
layer fluid with an ice-cover. Using the method of multipoles, Das and
Mandal [8] examined the problem of wave radiation by a sphere

submerged in a two-layer fluid with an ice-cover. Recently Dhillon et al.
[9] have analyzed the problems of surface and interface wave scattering
by a thin vertical barrier submerged in the upper fluid of finite depth
wherein the lower layer extends infinitely downwards.

Although wave interaction problems involving a vertical barrier
submerged either in a single-layer fluid or in a two-layer fluid are well
studied, studies involving an inclined plate are not common. Few
seminal investigations in this direction are Parsons and Martin [10],
Gayen and Mondal [11], Mondal and Banerjea [12]. Maiti and Mandal
[13] derived expressions for the reflection and the transmission coef-
ficients in connection with the wave scattering by an inclined plate
submerged in deep water. But, they presented the numerical results
only for a vertical plate.

Construction of partial breakwaters is important because installa-
tion of such breakwaters is less expensive compared to breakwaters that
extend from free surface till the bottom of the fluid region. Again to
maintain a balance between reflection and transmission and to control
these phenomena installation of partial breakwaters is more reasonable.
Analysis of wave motion past partial breakwaters in a two-fluid medium
may be found in Behera et al. [14,15], Mandal et al. [16].

In the present study, we consider a partial breakwater in the form of
a plate of finite width that is inclined to an arbitrary angle to the ver-
tical. To the best of the author's knowledge, there does not exist any
research work which examines scattering of surface/interface waves
with an inclined plate present in a two-layer fluid. However, inclined
plates may serve as effective breakwaters as they penetrate through the
layers of water with varying particle velocities and nurture their in-
teractions. This results in deformation of particular orbits which will
cause wave breaking and loss of energy in the wave. Also, inclined
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plates serve as a better option as a breakwater for wave attenuation and
reduction of wave loads.

In this paper, we deal with the scattering of normally incident waves
by a rigid inclined plate submerged in the lower layer of a two-layer
fluid. Both the fluid layers are considered to be of finite depth. We apply
a hypersingular integral equation method (viz. Parsons and Martin
[10,17]) to solve the problem. Solving the integral equations numeri-
cally we determine the reflection and the transmission coefficients and
the hydrodynamic force acting on the plates. We show that our results
for the reflection coefficient completely agree with those for a single-
layer fluid when we transform the two-layer fluid to a single-layer fluid
by adjusting specific parameters. In addition, we also use the energy
identities as a check on the correctness of all numerical results for the
reflection and the transmission coefficients. It is observed from the
numerical results that the reflection coefficients as well as the wave
load on the plate, reduce with an increasing inclination of the plate
(Fig. 1).

2. Formulation of the problem

Here we consider a two-layer ocean consisting of two superposed,
immiscible, inviscid fluids. The upper fluid is bounded above by a free
surface and is of finite depth h. The lower fluid is also of finite depth H.
The plane y=−h denotes the rest position of the free surface and the
common interface of the two fluids is represented by the horizontal
plane y=0, where the y-axis is chosen vertically downwards into the
lower fluid and is measured from the undisturbed interface. A thin
straight rigid plate L of width 2b is inclined at an angle ≤ ≤( )θ θ0 π

2 to
the vertical and is submerged in the lower layer. Let d(> b cosθ) be the
depth of its mid-point below the undisturbed mean interface of the two
fluids. Assuming the fluid motion to be irrotational, the motion in the
upper and lower fluids can be described by the velocity potentials Re
{ϕ1(x, y)e−iστ} and Re{ϕ2(x, y)e−iστ} respectively, where τ denotes the
time. The functions ϕj(x, y) satisfy

∇ =ϕ 0, in the respective fluid domain.j
2

(2.1)

Linearized boundary conditions at the free surface, interface and at the
bottom are

+ = = −Kϕ ϕ y h0 on ,y1 1 (2.2)

= =ϕ ϕ yon 0,y y1 2 (2.3)

+ = + =ρ Kϕ ϕ Kϕ ϕ y( ) on 0,y y1 1 2 2 (2.4)

= =ϕ y H0 on .y2 (2.5)

Here = <ρ ρ ρ( )ρ
ρ 1 2

1

2
, ρ1 and ρ2 being the densities of the upper and

lower layers respectively, =K σ
g

2
; σ is the angular frequency and g is the

acceleration due to gravity.
Also, the linearized boundary condition on the fixed barrier is

=ϕ L0 on ,n2 (2.6)

where the subscript n indicates the differentiation along the normal
direction.

In a two-layer fluid, progressive waves are described by

= ±ϕ x y f u y e( , ) ( , ) , in the respective fluid domain.j j
iux (2.7)

The functions fj(u, y) (j=1, 2) are given by

⎜ ⎟ ⎜ ⎟ ⎜

⎟ ⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠
=

−
⎡
⎣⎢

⎛
⎝

+ ⎞
⎠
− ⎛

⎝

+ ⎞
⎠
⎤
⎦⎥

⎛
⎝

⎞
⎠
= ⎛

⎝
− ⎞

⎠

f u y uH
K uh u uh

u u h y K u h

y f u y u H y

, sinh
cosh sinh

cosh sinh

, , cosh ,

1

2
(2.8)

where u satisfies the dispersion relation
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(2.9)

The above dispersion Eq. (2.9) has exactly two real and positive roots,
m and M.

The general far field radiation condition is;
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where the constants Ai are related to incident waves, so that these are
known constants. The constants Bi, Ci are unknown constants to be
determined and μ1=m, μ2=M.

In the present study, we consider the scattering of progressive waves
by an inclined plate. It is well established that in a two-layer fluid, for a
prescribed frequency, incident waves propagate with two different
wavenumbers.

Keeping this in mind, we consider the following problems:
Problem 1: The scattering of an incident wave of wave-number m

from the direction of x=−∞.
Problem 2: The scattering of an incident wave of wave-number M

from the direction of x=−∞.
In the far field condition (2.10), A1= 1, A2= 0 and A1= 0, A2= 1

for Problems 1 & 2 respectively. The constants B1, C1 (or) B2, C2, re-
present wave amplitude associated with the reflected and the trans-
mitted waves in surface and internal modes.

Therefore, the far-field forms of ϕj(j=1, 2) for an incident wave of
wavenumber m can be represented as
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where

=ϕ x y f m y e( , ) ( , ) ,jjm
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(2.12)

and the far-field forms of ϕj for the incident wave of wavenumberM can
be represented as
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where
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Fig. 1. Definition sketch.
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