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A B S T R A C T

This paper considers pseudo-impulsive numerical solutions to the forward-speed diffraction problem, as derived
from classical linearized potential flow theory. Both head- and following-seas cases are treated. Fourth-order
finite-difference approximations are applied on overlapping, boundary-fitted grids to obtain solutions using both
the Neumann-Kelvin and the double-body flow linearizations of the problem. A method for computing the
pseudo-impulsive incident wave forcing in finite water depth using the Fast Fourier Transform (FFT) is pre-
sented. The pseudo-impulsive scattering solution is then Fourier transformed into the frequency domain to
obtain the wave excitation forces and the body motion response. The calculations are validated against reference
solutions for a submerged circular cylinder and a submerged sphere. Calculations are also made for a modern
bulk carrier, showing good agreement with experimental measurements.

1. Introduction

Accurately predicting the wave-induced loading and response of
sailing ships is important to ensure their safety and reliability. While
high-fidelity numerical methods based on solving the Navier-Stokes
equations (CFD) are now feasible for simulating short-term individual
events, they are still too computationally expensive for routine analysis
and preliminary design optimization, see for example [1–6]. Thus,
methods based on the assumptions of a linearized potential flow are still
heavily used to map out the complete response spectrum, guide the
initial design process and set up extreme loading scenarios for more
refined CFD analysis.

The most efficient linearized potential flow solutions to this problem
are obtained using two-dimensional (2D) strip-type methods, for ex-
ample based on [7] or [8]. Despite the theoretical weaknesses inherent
to these methods, they generally produce excellent results for in-
tegrated quantities like global loading and motion response, although
detailed local quantities are not available. Three-dimensional (3D)
methods are also widely used, most commonly based on the boundary
element method (BEM) and the free-space (Rankine) Green function e.g.
[9–14]. A smaller number of time-domain solutions using the free-
surface Green function have also been developed, for example [15–18].
Finite element models for wave structure interaction problems can also
be found, for example [19,20]. Two well-known cases of the use of finite
difference method for the ship wave resistance problem are [21,22].

Motivated by the difficulties faced by BEM methods in obtaining a
linear scaling of the solution effort with increasing resolution, we have
been developing a high-order finite difference framework for nonlinear
water wave simulation and wave-structure interaction, see for example
[23–29] and [30]. While the total number of unknowns required here is
typically an order of magnitude larger than that required by BEM
methods, the resulting system matrix is sparse, leading to a linear
scaling of the solution effort, as demonstrated for example by [26]. This
is especially attractive for computing second- and higher-order wave
forces (for example added resistance [31]), where convergence of the
solution typically requires high resolution.

In this paper, we present our solution to the forward-speed dif-
fraction problem as implemented in the above described high-order
finite-difference framework. Either the Neumann-Kelvin or the double-
body flow linearization may be adopted. Inspired by the work of [15],
solutions are obtained in the time-domain using a pseudo-impulsive
incident wave which is tuned to include only a limited range of fre-
quencies. The pseudo-impulsive incident wave potential and its deri-
vatives can be computed from elementary functions in infinite water
depth, but in finite water depth no simple closed-form representation is
available. In this case, we compute the wave kinematics using Fast
Fourier Transforms, a fast and accurate method which has not yet ap-
peared in the literature (to our knowledge).

A method of lines approach [32] is applied to obtain the discrete
solution, with the explicit fourth-order Runge-Kutta scheme chosen for
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the time-integration. For the Laplace problem, fourth-order spatial fi-
nite difference schemes are developed on overlapping, boundary-fitted
grids, resulting in a consistently fourth-order accurate solution, as de-
monstrated by [26]. Frequency-domain quantities are obtained by
taking the Fourier transform of the time-domain results, and forces are
computed by integrating the pressure over the surface of the body
(using at least fourth-order accurate integration schemes).

The implementation supports waves incident from both ahead of the
beam (π/2≤ β≤ 3π/2, head seas), and from abaft the beam
(0≤ β < π/2 or 3π/2 < β≤ 2π, following seas). Since the solution is
obtained in a moving frame of reference fixed to the mean position of
the ship, the following seas problem is complicated by the non-unique
relationship between encounter frequency ωe and wave frequency ω0.
Following, for example [17,33], we solve three distinct pseudo-im-
pulsive diffraction problems in this case. Port/starboard symmetry of
the ship geometry can also be exploited to solve on only half of the
physical domain.

Validation results are presented using both semi-analytical solutions
and experimental measurements. First the forward-speed wave excita-
tion forces on both a submerged circular cylinder and a submerged
sphere are shown to converge towards the corresponding semi-analy-
tical results. Then a modern bulk carrier is analyzed in both head and
following seas, and both wave forces and body motions are shown to
compar every well with experimental measurements and other nu-
merical calculations. Finally we note that the model described here,
OceanWave3D-Seakeeping [34], is available as an open-source code.

2. Formulation of the problem

The details of the classic mathematical formulation for ship mo-
tions, including the diffraction problem, can be found for example in
[35]. In this section, we include a brief review of the theory and il-
lustrate the details of our solution. The focus here is on the diffraction
problem, while the details of our solution to the radiation problem can
be found in [26].

A coordinate system O− xyz is considered which is attached to the
mean position of the vessel and moves steadily with the same forward
speed U. The incident wave makes an angle β with the positive x-axis,
and is scattered by the moving vessel which has a steady forward speed
U. See also Fig. 1. Note that except for the steady forward motion, the
vessel is assumed to be stationary in the diffraction problem. For the
radiation problem, the body has (at least) six degrees of freedom de-
noted by: surge ξ1, sway ξ2, heave ξ3, roll ξ4, pitch ξ5 and yaw ξ6, which
are also shown in Fig. 1.

2.1. Governing equations

The flow domain is bounded by the free surface Sf, the surface of the
body Sb, the sea bed Sd and the far-field truncation boundary S∞ which
is required to limit the extent of the computational domain. Here Sf and
Sb are the mean undisturbed free- and body-surfaces respectively.
Assuming potential flow theory, all components of the flow velocity are
defined by a velocity potential ϕ x y z t( , , , )s . This potential describes the
flow due to the unknown scattered waves. The continuity condition can
be specified by the Laplace equation as follows:
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Note that the total velocity potential in the moving frame of reference
can be decomposed as follows:

= − + ′ +ϕ Ux ϕ ϕ .s b s (2.2)

The base flow is shown here by ′ϕb, and for the Neumann-Kelvin line-
arization ′ =ϕ 0b . For the case of the double-body linearization, the base
flow can be obtained by solving the following steady-flow problem
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∇ → ∞ϕ S0 in the far field ( ),db (2.6)

whereW=(U, 0, 0) and n is the unit normal vector to the body surface,
directed into the body (out of the fluid). This boundary value problem
describes an infinite-domain potential flow around a combination of the
body and its mirror image with respect to the z=0 plane.

2.2. Boundary conditions

The free surface Sf is subject to the linear dynamic and kinematic
conditions as follows:
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Here g is the acceleration due to gravity and ζ defines the free-surface
elevation of the scattered waves. At the sea bed Sd and the far-field
truncation boundary S∞ the following no-flux condition is applied:

∇ =n ϕ· 0.s (2.9)

At the surface of the body Sb the similar no-flux condition is applied to
the flow field comprised of the incident wave ϕ x y z t( , , , )0 and the
scattered wave ϕ x y z t( , , , )s :

∇ + = ⇒ ∇ = − ∇n n nϕ ϕ ϕ ϕ· ( ) 0 · · .s s0 0 (2.10)

The numerical solution to this initial boundary value problem is de-
scribed in Section 3.

2.3. Implementation of the body boundary condition

In order to obtain the scattering velocity potential, it is required to
know the body boundary condition in the time domain. To this end,
first the velocity potential of a linear monochromatic incident wave is
considered, which can be defined everywhere in the constant-depth
domain by:
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in which = x y zr ( , , ) is the position vector, and A is the amplitude of
the incident wave, which without loss of generality is assumed to be
unity. Here ω0 is the wave frequency and ωe is the encounter frequency,
and they are related through:

= −ω ω kU βcos ,e 0 (2.12)

where k=2π/λ is the wave number defined for the wave with length λ.
The heading angle is β and is measured with respect to the positive x-
axis. The water depth is given by h, and α is a phase function defined as:

= +α x β y βcos sin . (2.13)

Note that with the above definition, head-seas and following-seas
conditions are given by β= π and β=0 respectively. Moreover the
incident wave elevation will be:

= −ζ t e er( , ) Re{ }.kα ω t
0

i i e (2.14)

If the interest was to find the scattering velocity potential for a single
incident wave with a specific frequency, then Eq. (2.11) would be
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