Accepted Manuscript

In-situ growth of $1T/2H-MoS_2$ on carbon fiber cloth and the modification of SnS_2 nanoparticles: A three-dimensional heterostructure for high-performance flexible lithium-ion batteries

Xiaoping Lin, Dongyang Xue, Longze Zhao, Fengyi Zong, Xiaochuan Duan, Xi Pan, Jianmin Zhang, Qiuhong Li

PII: S1385-8947(18)31659-0

DOI: https://doi.org/10.1016/j.cej.2018.08.208

Reference: CEJ 19822

To appear in: Chemical Engineering Journal

Received Date: 4 June 2018
Revised Date: 7 August 2018
Accepted Date: 27 August 2018

Please cite this article as: X. Lin, D. Xue, L. Zhao, F. Zong, X. Duan, X. Pan, J. Zhang, Q. Li, In-situ growth of 1T/2H-MoS₂ on carbon fiber cloth and the modification of SnS₂ nanoparticles: A three-dimensional heterostructure for high-performance flexible lithium-ion batteries, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej.2018.08.208

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

In-situ growth of $1T/2H-MoS_2$ on carbon fiber cloth and the modification of SnS_2 nanoparticles: A three-dimensional heterostructure for high-performance flexible lithium-ion batteries

Xiaoping Lin, Dongyang Xue, Longze Zhao, Fengyi Zong, Xiaochuan Duan, Xi Pan, Jianmin Zhang, Qiuhong Li*

Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China. E-mail:liqiuhong@xmu.edu.cn; Fax: +86-0592-2187196; Tel: +86-0592-2187198

Abstract

Flexible lithium ion batteries are important for wearable electronic devices. Herein, 1T/2H phase MoS₂ nanosheets are grown on carbon fiber cloth, and the ultra-small SnS₂ nanoparticles are anchored in the surface of MoS₂ nanosheets uniformly. We fabricate the hierarchical nanostructures via a hydrothermal method then water bath process. During in-situ growth of 1T/2H phase MoS₂, urea is used as the surfactant and NH⁴⁺ (produced by urea and ammonium molybdate tetrahydrate) is acted as insertion guest ions to stabilize 1T phase MoS₂. The synergistic effects between MoS₂ nanosheets and SnS₂ nanoparticles can improve structural stability of the electrode and significant enhance the transport of Li ions and electrons, thereby ameliorate the electrochemical properties. When applied as a binder-free, flexible Li-ion battery anode, it exhibits admirable cycling stability and excellent rate performance. Due to the presence of 1T phase MoS₂ and evenly distributed of ultra-small SnS₂ nanoparticles on MoS₂ nanosheets, the SnS₂/MoS₂/carbon fiber cloth composites maintain 1294 mA h g⁻¹ when

Download English Version:

https://daneshyari.com/en/article/10145315

Download Persian Version:

https://daneshyari.com/article/10145315

<u>Daneshyari.com</u>