Accepted Manuscript

Self-assembly of Hierarchical N-heterocycles-Inorganic Materials into Three-Dimensional

Wail Al Zoubi, Young Gun Ko

PII: S1385-8947(18)31806-0

DOI: https://doi.org/10.1016/j.cej.2018.09.089

Reference: CEJ 19928

To appear in: Chemical Engineering Journal

Received Date: 25 June 2018
Revised Date: 9 August 2018
Accepted Date: 11 September 2018

Please cite this article as: W.A. Zoubi, Y.G. Ko, Self-assembly of Hierarchical N-heterocycles-Inorganic Materials into Three-Dimensional, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej.2018.09.089

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Self-assembly of Hierarchical N-heterocycles-Inorganic Materials into Three-Dimensional

Wail Al Zoubi and Young Gun Ko*

Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

*Corresponding author: E-mail address: younggun@ynu.ac.kr (Y.G. Ko)

ABSTRACT

Organic-inorganic materials based on porous inorganic materials predesigned hydrophobic multilayer coatings are well-established in the literature, but N-heterocyclic donor to prepare such flower-like structures with chemical bonds has not been reported to date. Here, organic-inorganic hybrid materials prepared by simultaneous coordination-driven assembly of heterocyclic molecules and porous materials are reported. Immersion porous inorganic film with 8-hydroxyquinoline (8-HQ) in ethanol solution leads, within a few days, to the formation of flowerlike organic-inorganic materials. Then, the organic layer grows on the inorganic surface, resulting in formation of charge transfer complex (Mgq2 and Alq₃) between N-heterocycles and metal ions (Al⁺³ and Mg²⁺). A spontaneous self-organization of these organic molecules is then triggered to form stable hierarchical N-heterocycles-inorganic materials, resulting from the non-covalent π - π bonds and inter-molecular hydrogen bonds between aromatic molecules. Finally, the electrochemical performance was enhanced in the order PEO-HQ4 (0.1 M 8-HQ for 2 days), PEO-HQ3 (0.05 M 8-HQ for 2 days), PEO-HQ2 (0.1 M 8-HQ for 1 day), PEO-HQ1 (0.05 M 8-HQ for 1 day), and PEO, which was discussed on the basis of polarization interpretation. The results indicate that magnesium film coated with the self-assembled 8-HQ/inorganic materials grown via plasma electrolytic oxidation and dip-chemical coating are corroded several times slower in an aerated NaCl solution as compared to the corrosion rate of bare magnesium.

KEYWORDS: magnesium alloy, N-heterocycles, inorganic materials, organic materials, hybrid, electrochemistry.

Download English Version:

https://daneshyari.com/en/article/10145341

Download Persian Version:

https://daneshyari.com/article/10145341

<u>Daneshyari.com</u>