Accepted Manuscript

Mass cultivation of *Dunaliella salina* in a flat plate photobioreactor and its effective harvesting

Sk Riyazat Khadim, Prabhakar Singh, Ankit Kumar Singh, Anupam Tiwari, Abhishek Mohanta, Ravi Kumar Asthana

PII: S0960-8524(18)31175-1

DOI: https://doi.org/10.1016/j.biortech.2018.08.071

Reference: BITE 20354

To appear in: Bioresource Technology

Received Date: 11 July 2018
Revised Date: 16 August 2018
Accepted Date: 17 August 2018

Please cite this article as: Khadim, S.R., Singh, P., Singh, A.K., Tiwari, A., Mohanta, A., Asthana, R.K., Mass cultivation of *Dunaliella salina* in a flat plate photobioreactor and its effective harvesting, *Bioresource Technology* (2018), doi: https://doi.org/10.1016/j.biortech.2018.08.071

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Mass cultivation of *Dunaliella salina* in a flat plate photobioreactor and its effective harvesting

Sk Riyazat Khadim, Prabhakar Singh, Ankit Kumar Singh, Anupam Tiwari, Abhishek Mohanta and Ravi Kumar Asthana*

RN Singh Memorial Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India, 221005.

*Corresponding author: R. K. Asthana, Department of Botany, Institute of Science,

Banaras Hindu University, Varanasi-221005

Phone: +91-9454161038, Fax: +91-0542-6701124

E-mail address: asthana.ravi@gmail.com, rasthana@bhu.ac.in

Subject area: Algae cultivation and harvesting

Number of black and white figures: 5

Number of coloured figures: 0

No of tables: 1

Abstract

Mass cultivation of *Dunaliella salina* was standardized in a flat plate photobioreactor followed by a vertical flat plate photobioreactor. Maximum biomass productivity (14.95±0.43 mgL⁻¹d⁻¹ dry cell weight) was achieved in the latter at inoculum concentration of OD_{680nm} = 0.1, 100 μmolm⁻²s⁻¹ light illumination and 1.0 Lmin⁻¹ aeration. Semicontinuous operation with varying KNO₃ and NaHCO₃ concentrations resulted highest biomass productivity (17.85±0.55 mgL⁻¹d⁻¹) at 0.50 mM NaHCO₃ and 15 mM KNO₃. However, maximum lipid (16.36±1.18% dry cell weight) was achieved at 0.75 mM NaHCO₃ and 10 mM KNO₃. Flocculation studies employing potash alum, FeCl₃.6H₂O or pH showed harvesting efficiencies exceeding 90% in 0.75 mM potash alum or FeCl₃.6H₂O or pH 11, but they yielded low concentration factor (<

Download English Version:

https://daneshyari.com/en/article/10146482

Download Persian Version:

https://daneshyari.com/article/10146482

<u>Daneshyari.com</u>