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A B S T R A C T

Electricity storage could prove essential for highly-renewable power systems, but the ability to model its op-
eration and impacts is limited with current techniques. Studies based on historic market prices or other fixed
price time-series are commonplace, but cannot account for the impacts of storage on prices, and thus over-
estimate utilisation and profits. Power systems models which minimise total system cost cannot model the
economic dispatch of storage based on market prices, and thus cannot consider large aggregators of storage
devices who are not perfectly competitive.

We demonstrate new algorithms which calculate the profit-maximising dispatch of storage accounting for its
price effects, using simple functional programming. These are technology agnostic, and can consider short-term
battery storage through to inter-seasonal chemical storage (e.g. power-to-gas). The models consider both com-
petitive and monopolistic operators, and require 1–10 s to dispatch GWs of storage over one year.

Using a case study of the British power system, we show that failure to model price effects leads to material
errors in profits and utilisation with capacities above 100MW in a ∼50 GW system. We simulate up to 10 GW of
storage, showing dramatically different outcomes based on ownership. Compared to a perfectly competitive
market, a monopolistic owner would restrict storage utilisation by 30% to increase profits by 85%, thus reducing
its benefit to society via smoothing demand and output from intermittent renewables by 20%.

1. Introduction

“Energy storage is like bacon: It makes everything better” [1]. It
offers the potential of ‘baseload renewables’ by managing their inter-
mittent output, and of hyper-flexible large thermal generators so that
even nuclear reactors could match variable demand. This could re-
volutionise grid management, facilitate deeper decarbonisation and
significantly reduce the requirement for fossil fuels to provide flex-
ibility. Electricity storage is therefore considered one of the most im-
portant issues within the energy industry [2], with “the potential to
dictate the pace and the scale of the energy transition”. It is one of the
necessary foundations for clean energy according to the Global Apollo
Programme Report [3] and Bill Gates’s Breakthrough Energy deem low-
cost storage to be “transformational” [4].

Realising the potential of storage requires continued technological
development and cost reductions, and for sufficient revenue to exist
from providing bulk energy arbitrage to justify the large-scale invest-
ments required. As with any emergent, disruptive technology, the
modes in which storage will be operated, their effects on the wider
electricity system and their potential profitability are all uncertain. It
falls to the modelling community to offer quantitative insights into

these issues and the wider implications for the electricity and energy
sectors.

The main purpose of this paper is to present a new method for in-
cluding bulk electrical energy storage (EES) in electricity market
models without the need for an optimisation framework. The presented
algorithm derives an optimal dispatch schedule that maximises profits
for storage owners taking account of price-effects; that is, it includes the
impact that deploying large amounts of storage has on system price,
due to the dispatch of other generators. The approach can be applied
within any market model formulation that produces a time-series of
wholesale prices. In this paper, the algorithm is coupled with a simple
merit order stack (MOS) pricing model, resulting in extremely fast
calculation times, allowing rapid testing of the storage algorithm across
a wide scenario-space. We illustrate our description of this new ap-
proach with a demonstration of the model on the British power system.

We present two variants of the algorithm, corresponding to two
extremes of storage market behaviour: perfect competition (i.e. an
atomistic market comprising many small merchant storage operators)
and perfect monopoly (i.e. a market in which a single large utility
owner or technology aggregator can exert market power). In the case of
perfect competition the optimised dispatch maximises the utilisation of
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available storage and thereby achieving also maximum smoothing of
national net demand and societal benefit. In the case of a market
monopoly, the optimised dispatch maximises the operator’s profits by
restricting the utilisation of storage.

The remainder of the paper is set out as follows. Section 2 provides
background on how the impact of storage on prices and how storage
dispatch is modelled. Section 3 describes the algorithms we develop and
the simple electricity market model we use to demonstrate them. The
results in Section 4 explore the differences between the algorithms in
terms of storage owners’ profits, storage utilisation, dispatch patterns
and influence on smoothing demand; and explore the trade-off between
speed and accuracy that can be obtained with the algorithms. Section 5
discusses the implications for energy systems modellers and policy-
makers, and concludes.

In the interests of promoting transparent and reproducible science,
the storage algorithms and their implementation in an exemplary
electricity market model are released open source, in the form of Visual
Basic code and an Excel spreadsheet model. Their generic nature should
allow them to be easily reinterpreted into other languages.

2. Background

Storage of electrical energy has many potential revenue sources
[5–7]:

• earning profits either from arbitrage or in the ancillary markets;

• integration with existing infrastructure to reduce balancing costs;

• time-shifting delivery or managing constraints for demand centres
(to reduce network service charges and peak demands); or

• deferring costly upgrades to transmission and distribution systems.

The most commonly studied revenue source is arbitrage, which
unlike the other sources mentioned, exists and may be quantified solely
through electricity price spreads within the market. Other revenue
sources are linked to the precise set-up and compensation policies
within specific markets. In this work we focus exclusively on arbitrage
revenues.

A storage device discharging at peak time reduces the need for
generation from the most expensive generators on the system, poten-
tially reducing prices. Conversely, when storage is recharged, system
demand is increased and prices should rise. In reality, this narrowing of
the price differential means that the revenue from selling stored

electricity is lower, the cost of recharging is higher, and thus the profits
from arbitrage are lower than would be expected based on the prices
that are observed without that storage. These so-called ‘price effects’
become significant as the amount of storage within a system grows [8].

It is common within the storage literature to model the profits of
storage based on a fixed time-series of prices, either emerging from
historic markets or based on future simulations [9–13]. Such studies
commonly refer to situations in which price effects are neglected as the
storage being a ‘price-taker’. This is incorrect and may lead to confu-
sion. To economists, the price-taker/price-maker terminology refers to
the behaviour of individual firms within a market and their ability (or
otherwise) to influence prices due to the levels of competition with the
market. Specifically, a price-taker is a storage operator which is too
small to move prices by itself, but still takes account of the effect that
the overall fleet of storage devices has on prices. It would be more
accurate to refer to storage dispatch models in which price effects are
neglected as having exogenous pricing (i.e. prices are determined ex-
ternally), and those that include price effects as having endogenous
pricing (i.e. storage is part of the price formation process).

As we discuss both price-effects and competition in this paper, we
refer to exogenous pricing (commonly referred to as price-taker) as a
‘fixed-price’ approach; endogenous pricing with price-taker firms as a
‘competitive’ approach; and endogenous pricing with price-maker firms
as a ‘monopolistic’ approach.

2.1. The price effects of dispatching storage

The issue of price effects only becomes important once the amount
of storage capacity within a market is sufficient to cause significant
changes in price. Fig. 1 demonstrates this for a simple case with linear
electricity supply curve (diagonal line in panel 1a and 1b). Thick arrows
show the impact of storage: in panel a, charge and discharge have no
effect on prices while in panel b the sloping supply curve is taken into
account. The difference between the area of the solid red and solid
green bars signifies the profit made from arbitrage, the hatched areas in
panel b show the profit that is lost by storage influencing prices. This
creates the difference between the realised profits shown by the two
lines in panel c.

The profits shown in Fig. 1a and in the exogenous line of 1c cannot
be obtained in the real world, but these are what a naive fixed-price
algorithm would anticipate as greater amounts of storage are dis-
patched. The economic reality is shown in Fig. 1b and the blue line of

Fig. 1. Schematic of the impact storage dispatch has on electricity prices and demand and thus on arbitrage revenue. Panels a and b show electricity price against the
power dispatched from storage charging (short bar) and discharging (tall bar). Q(Tmin) and Q(Tmax) denote the electricity supplied in the absence of storage at two
times, Tmin and Tmax, while Q(Tmin)’ and Q(Tmax)’ denote how the supply from non-storage sources alters once storage is included. Panel c visualises how profits vary
with the power supplied from storage, where ΔQ=Q(Tmax) – Q(Tmin). A negative profit indicates that more money was spent charging the storage device than was
obtained discharging it – i.e. a loss was made.
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