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a b s t r a c t

When performing Bayesian data analysis using a general linear mixed model, the resulting
posterior density is almost always analytically intractable. However, if proper conditionally
conjugate priors are used, there is a simple two-block Gibbs sampler that is geometrically
ergodic in nearly all practical settings, including situations where p > n (Abrahamsen
and Hobert, 2017). Unfortunately, the (conditionally conjugate) multivariate Gaussian
prior on β does not perform well in the high-dimensional setting where p ≫ n. In
this paper, we consider an alternative model in which the multivariate Gaussian prior is
replaced by the normal-gamma shrinkage prior developed by Griffin and Brown (2010).
This change leads to a much more complex posterior density, and we develop a simple
MCMC algorithm for exploring it. This algorithm,which has both deterministic and random
scan components, is easier to analyze than the more obvious three-step Gibbs sampler.
Indeed, we prove that the new algorithm is geometrically ergodic in most practical
settings.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The general linear mixed model is one of the most frequently applied statistical models. It takes the form

Y = Xβ +

m∑
i=1

Ziui + e,

where Y is an observable n×1 data vector, X and Z1, . . . , Zm are knownmatrices, β is an unknown p×1 vector of regression
coefficients, u1, . . . , um are independent random vectors whose elements represent the various levels of the random factors
in the model, and e ∼ Nn(0, λ−1

0 I). The random vectors e and u = (u⊤

1 , . . . , u
⊤
m)

⊤ are independent, and u ∼ Nq(0,Λ−1),
where for each i ∈ {1, . . . ,m}, ui is qi × 1, q = q1 + · · · + qm, andΛ = λ1Iq1 ⊕ · · · ⊕ λmIqm . We further assume throughout
that n ⩾ 2, and that qi ⩾ 2 for each i ∈ {1, . . . ,m}. For a book-length treatment of this model and its many applications,
see McCulloch et al. [16].

In the Bayesian setting, prior distributions are assigned to β and λ = (λ0, . . . , λm)⊤. Unfortunately, any non-trivial prior
leads to an intractable posterior density. However, if β and λ are assigned conditionally conjugate priors, then a simple
two-block Gibbs sampler can be used to explore the resulting posterior density. In particular, if we assign a multivariate
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Gaussian prior to β , and independent gamma priors to the precision parameters, then, letting θ = (β⊤, u⊤)⊤, it is easily
shown that given observed data y, θ |λ, y is multivariate normal, and λ|θ, y is a product of independent gammas. Since u is
unobservable, it is treated like a parameter. Convergence rate results for this blockGibbs sampler canbe found inAbrahamsen
and Hobert [2].

Now consider this Bayesian mixed model in the high-dimensional setting where p ≫ n. This situation can arise,
e.g., in genetics and neuroscience where variability between subjects is most appropriately handled with random effects;
see, e.g., [6,22]. While the model described above could certainly be used in this setting, the multivariate Gaussian prior
on β is really not suitable. Indeed, when p ≫ n, it is often assumed that β is sparse, i.e., that many components
of β are zero. Unfortunately, the multivariate Gaussian prior for β will shrink the estimated coefficients towards zero,
but not enough to produce an (approximately) sparse estimate of β . Additionally, when the components of β have
varying magnitudes, the estimates of the ‘‘large’’ components will be shrunk disproportionately compared to the esti-
mates of the ‘‘small’’ components. Below we propose an alternative prior for β that is tailored to the high-dimensional
setting.

The well-known Bayesian interpretation of the lasso (involving i.i.d. Laplace priors for the regression parameters) has
led to a flurry of recent research concerning the development of prior distributions for regression parameters (in linear
models without random effects) that yield posterior distributions with high posterior probability around sparse values of
β . These prior distributions are called continuous shrinkage priors and the corresponding statistical models are referred to
as Bayesian shrinkage models; see, e.g., [4,5,8,19,20]. One such Bayesian shrinkage model is the so-called normal-gamma
model of Griffin and Brown [8], which is given by

Y |β, τ , λ0 ∼ Nn(Xβ, λ−1
0 In), β|τ , λ0 ∼ Np(0, λ−1

0 Dτ ),

where τ = (τ1, . . . , τp)⊤ and Dτ is a diagonal matrix with the τjs on the diagonal. The precision parameter, λ0, and the

components of τ are assumed to be a priori independent gamma random variables with λ0 ∼ G(a, b) and τj
i.i.d.
∼ G(c, d)

for all j ∈ {1, . . . , p}. When c = 1, this model becomes the Bayesian lasso model introduced by Park and Casella [19]. We
note that Bhattacharya et al. [4,5] show that, in terms of frequentist optimality, the Bayesian lasso has sub-optimal prior
concentration rates in that it does not place sufficient mass around sparse values of β . Alternatively, shrinkage priors that
have singularities at zero and robust tails, such as in the normal-gamma model with c < 1/2, have been shown to perform
well in empirical studies.

In this paper, we propose and analyze an MCMC algorithm for a new Bayesian general linear mixed model in which the
standard multivariate normal prior on β is replaced with the continuous shrinkage prior from the normal-gamma model.
Our high-dimensional Bayesian general linear mixed model is defined as follows

Y |β, u, τ , λ ∼ Nn

(
Xβ +

m∑
i=1

Ziui, λ
−1
0 In

)
, β|u, τ , λ ∼ Np(0, λ−1

0 Dτ ), u|τ , λ ∼ Nq(0,Λ−1), (1)

where λ and τ are a priori independent with λi
ind
∼ G(ai, bi), for i ∈ {0, . . . ,m}, and τj

i.i.d.
∼ G(c, d) for j ∈ {1, . . . , p}. This

model can be considered a Bayesian analog of the frequentist, high dimensional mixed model developed by Schelldorfer
et al. [25]. (Of course, it can also be viewed as a mixed version of the normal-gamma shrinkage model.) A similar sparse
Bayesian linear mixed model has been proposed by Zhou et al. [27] for polygenic modeling. They assume a ‘‘spike and slab’’
prior consisting of a mixture of a point mass at 0 and a normal distribution for the components of β . However, it is well-
known that spike and slab priors lead to MCMC algorithms that have convergence problems, especially when p is large
[5,20].

Our model in (1), can easily be adapted to other global–local shrinkage priors as defined in [20]. For instance, we
could place a Horseshoe-type prior on β simply by assuming √

τj ∼ C+(0, η), where C+(a, b) represents the half-
Cauchy distribution with location and scale parameters a and b, respectively. However, this particular model does not
admit a similar 3-block Gibbs sampler because the full conditional density of τ does not have a standard closed form
representation. While this is not a problem from an inference standpoint, a similar drift function analysis is not possible
if the normalizing constants of the full conditional densities are not known. Makalic and Schmidt [15] have developed
a closed form Gibbs sampler for the Horseshoe and Horseshoe+ standard regression models using auxiliary variables. It
may be possible to prove that these samplers are geometrically ergodic, which would be an interesting problem for future
work.

Recall that θ = (β⊤, u⊤)⊤, and let π (θ, λ, τ |y) denote the posterior density associated with model (1). This density is
highly intractable and Bayesian inference requires MCMC to explore its posterior distribution. As we show in Section 2, the
full conditional densities π1(θ |λ, τ , y), π2(λ|θ, τ , y), and π3(τ |θ, λ, y) all have standard forms, which means that there is
a simple three-block Gibbs sampler available. Unfortunately, we have been unable to establish a convergence rate for this
Gibbs sampler (in either deterministic or random scan form). However, we have been able to prove that a related hybrid
algorithm does converge at a geometric rate. The invariant density of our Markov chain is

π (θ, λ|y) =

∫
Rp

+

π (θ, λ, τ |y) dτ ,



Download English Version:

https://daneshyari.com/en/article/10147229

Download Persian Version:

https://daneshyari.com/article/10147229

Daneshyari.com

https://daneshyari.com/en/article/10147229
https://daneshyari.com/article/10147229
https://daneshyari.com

