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a b s t r a c t

One of the most widely applied unit root tests suffers from size distortions when moving
average noise exists. As a remedy, this paper proposes a bootstrap test targeting moving
average noise and shows its effectiveness in both theory and simulation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Throughout extensive literature concerning unit root test, the Augmented Dickey–Fuller (ADF) test and the Phillips–
Perron (PP) test are perhaps themost renowned.When put into simulation, the PP test enjoys higher power than the ADF test
but suffers greater size distortion, especially under negative Moving Average (MA) noise (Phillips and Perron, 1988; Nabeya
and Perron, 1994; Cheung and Lai, 1997; Leybourne and Newbold, 1999). For a solution to this size distortion occurrence,
see Perron and Ng (1996).

Here we propose a bootstrap unit root test as a remedy. When the asymptotic distributions of the test statistics involve
unknown parameters, bootstrap circumvents the estimation of the unknown parameters and thus facilitates hypothesis
testing. On the other hand, when the asymptotic distributions are pivotal, a bootstrap unit root test may enjoy second order
efficiency, andmay consequently reduce the aforementioned size distortion (Park, 2003). Variants of the bootstrap unit root
test include the AutoRegressive (AR) sieve bootstrap test (Psaradakis, 2001; Chang and Park, 2003; Paparoditis and Politis,
2005; Palm et al., 2008), the block bootstrap test (Paparoditis and Politis, 2003; Parker et al., 2015), the stationary bootstrap
test (Swensen, 2003; Parker et al., 2006), and the wild bootstrap test (Cavaliere and Taylor, 2009).

To target the size distortion of the PP test under MA noise, we apply the Linear Process Bootstrap (LPB) of McMurry and
Politis (2010) to the unit root test. As the closest analogue to the MA-sieve bootstrap, LPB first estimates the autocovariance
matrix by fitting a MA-type autocovariance function, then pre-whitens the noise with the estimated autocovariance matrix,
then bootstraps from the pre-whitened noise, and finally post-colors the bootstrap noise with the estimated autocovariance
matrix. In the sample mean case, McMurry and Politis (2010); Jentsch et al. (2015) indicate good asymptotic and empirical
performance of LPB, particularly in the presence of MA noise.

As a result, the LPB unit root test becomes a promising solution to the size distortion under MA noise. We proceed to
develop a large sample theory for the LPB unit root test by establishing a bootstrap Functional CLT (FCLT) for LPB. Despite
its name, the LPB unit root test turns out to be asymptotically valid under not only linear noises but also a large family of
non-linear noises, namely, the physical dependent process defined in Wu (2005).
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This paper proceeds as follows: Section 2 specifies the physical dependence assumption and recalls the Phillips–Perron
test. Section 3 introduces the LPB unit root test, details the estimation of the autocovariance matrix, and describes the
adaptive bandwidth selection. Section 4 presents the empirical results of the LPB unit root test. Supplementary materials
include all technical proofs, as well as a discussion concerning deterministic components.

2. Phillips–Perron test

Suppose {Yt}
n
t=1 is an observable sequence of random variables. For t = 1, 2, . . . , define φt and Vt as the prediction

coefficient and the prediction error, respectively, when predicting Yt with Yt−1. Now suppose φt = φ for all t = 1, 2, . . . .
Then

Yt = φYt−1 + Vt . (2.1)

Denote the set of integers byZ. We now assume that the noise sequence {Vt}t∈Z is strictly stationary, short-range dependent,
and invertible. Specifically, consider the following assumptions on {Vt}t∈Z:

Assumption 2.1. Let {ϵt}t∈Z be a sequence of independent and identically distributed (iid) random variables. Let ϵ′

0 be iden-
tically distributed with ϵ0, and be independent of {ϵt}t∈Z. Suppose Vt = g(. . . , ϵt−1, ϵt ). Let V ′

t = g(. . . , ϵ−1, ϵ
′

0, ϵ1, . . . , ϵt ),
δp(t) = (E(|Vt − V ′

t |
p))1/p be the physical dependence measure of {Vt}, and γ (h) = E(VtVt−h). Suppose

∑
h∈Zγ (h) > 0,∑

∞

h=0h|γ (h)| < ∞, E(Vt ) = 0, E(V 4
t ) < ∞, and

∑
∞

t=1δ4(t) < ∞.

Assumption 2.2. Recall Assumption 2.1. Further, assume that for some p > 4,
∑

∞

t=1δp(t) < ∞ and E(|Vt |
p) < ∞; for some

β > 2, |γ (h)| = o(h−β ); and for some α > 0, hα
∑

∞

k=h+1|γ (k)| is non-increasing when h is large enough.
When φ = 1, suppose Y0 = 0. Then {Yt}

∞

t=1 is a unit root process starting at zero. When φ < 0, suppose (2.1) holds for all
t ∈ Z. Then {Yt}

∞

t=1 is a strictly stationary process. To separate these two cases, we testH0 : φ = 1 vsH1 : φ < 1. Let φ̂ be the
Ordinary Least Squares (OLS) estimator in Yt = φ̂Yt−1 + V̂t , and tφ̂ be the t-statistic of φ̂. Let σ 2

= limn→∞Var(n−1/2∑n
t=1Vt ),

σ̂ 2 be a consistent estimator of σ 2, γ̂ (0) be a consistent estimator of γ (0), and

Zφ = n(φ̂ − 1) − (σ̂ 2
− γ̂ (0))(2n−2

n∑
t=1

Y 2
t−1)

−1,

Zt = (γ̂ (0)/σ̂ 2)tφ̂ − (1/2)(σ̂ 2
− γ̂ (0))(σ̂ 2n−2

n∑
t=1

Y 2
t−1)

−1/2.

(2.2)

LetW (u) be a standard Brownian motion. By Theorem 3 of Wu (2005), under the null hypothesis H0 and Assumption 2.1 we
have

Zφ ⇒ (
∫ 1

0
W (u)dW (u))(

∫ 1

0
(W (u))2du)−1,

Zt ⇒ (
∫ 1

0
W (u)dW (u))(

∫ 1

0
(W (u))2du)−1/2.

(2.3)

The PP test rejects the null hypothesis H0 when Zφ is too small, or, alternatively, when Zt is too small, and calculates the
critical values from (2.3).

3. Linear process bootstrap unit root test

As mentioned in the introduction, the PP test enjoys high empirical power, but suffers from empirical size distortions
under negativeMA noise. Tomitigate the size distortion while preserving the high power, we apply LPB to the OLS estimator
φ̂ and its t-statistic tφ̂ . Alternatively, we can also apply LPB to Zφ and Zt in (2.2); however, in Section 4, applying LPB to Zφ or
Zt gives an inferior empirical result.

Let Ȳ = n−1∑n
t=1Yt , V̄ = n−1∑n

t=1Vt ,
¯̂V = n−1∑n

t=1V̂t , ¯̂ϵ = n−1∑n
t=1ϵ̂t , and σ̂ 2

ϵ̂
= n−1∑n

t=1(ϵ̂t − ¯̂ϵ)2. Let

V = (V1, . . . , Vn)′, V̌ = (V̌1, . . . , V̌n)′, V̂ = (V̂1, . . . , V̂n)′,
¯̂V = ( ¯̂V , . . . ,

¯̂V )′, V ∗
= (V ∗

1 , . . . , V ∗
n )

′, ϵ̂ = (ϵ̂1, . . . , ϵ̂n)′, and
ϵ∗

= (ϵ∗

1 , . . . , ϵ
∗
n )

′. LetΣ = Var(V ) and Σ̂V̂ be a positive definite estimator ofΣ .Wewill further specify Σ̂V̂ in Algorithm3.2.
Let Σ̂ 1/2

V̂
be a lower triangular matrix that satisfies Cholesky decomposition Σ̂

1/2
V̂

Σ̂
1/2′

V̂
= Σ̂V̂ , and Σ̂

−1/2
V̂

be the inverse
matrix of Σ̂ 1/2

V̂
. Let P∗, E∗, Var∗, Cov∗ be the probability, expectation, variance, and covariance, respectively, conditional on

data {Yt}.

Algorithm 3.1 (Linear Process Bootstrap Unit Root Test).

Step 1: regress Yt = φ̂Yt−1 + V̂t ; record φ̂ and its t-statistic tφ̂ .

Step 2: let V̌t = V̂t −
¯̂V , ϵ̂ = Σ̂

−1/2
V̂

V̌ , and ϵ̌t = (ϵ̂t − ¯̂ϵ)/σ̂ϵ̂ .
Step 3: randomly sample ϵ∗

1 , . . . , ϵ
∗
n from {ϵ̌1, . . . , ϵ̌n}.
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