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a b s t r a c t

To generate correlated data for given marginal distributions, it is essential that the desired
Pearson correlation coefficient is between the minimum and maximum correlation coef-
ficients. In this paper, we consider estimation of the minimum and maximum correlation
coefficients of continuous random variables X andY . A strong law of large numbers and
asymptotic normality are established for the estimators studied in this paper.
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1. Introduction 1

In the clinical research,we often dealwith correlated data. For example, in a clinical trial to treat healthy post-menopausal 2

women with vasomotor symptoms, from the US Food and Drug Administration (FDA), the changes of the vasomotor 3

symptoms from the baseline to week 4 and week 12 are recommended as the co-primary endpoints. Another example is 4

about the informative censoring in the survival analysis. In this type of studies, the survival and censoring variables are not 5

independent. Moreover, they may not have the same distributions, for instance, the survival distribution is Weibull and the 6

censoring distribution is exponential. 7

Over the last decade, theMonte Carlo simulation has played an important role in the drug development (Chang, 2011). To 8

carry out Monte Carlo simulation in the examples just mentioned above, the correlated data is generated and the statistical 9

procedure is evaluated accordingly. For example, to determine the sample size for the treatment of healthy post-menopausal 10

womenwith vasomotor symptoms, we need to take into account the correlation structures of the two co-primary endpoints 11

(Sozu and others, 2006). Dukic andMarić (2013) and Xiang (2015) proposed algorithms to generate correlated data for given 12

marginal distributions and a specified Pearson correlation coefficient (simply correlation coefficient). It is essential that the 13

specified correlation coefficient should be between the minimum and maximum correlation coefficients. Estimation of the 14

minimum and maximum correlation coefficients becomes important for generating correlated data. For some distributions, 15

there are closed-form expressions for the minimum correlation coefficients (see Dukic and Marić, 2013; De Veaux, 1976). 16

However, in most cases the closed-form expressions do not exist. 17

Let {Xi}, i = 1, . . . , n, be iid with Xi ∼ F (x) and {Yi}, i = 1, . . . , n, be iid with Yi ∼ G(x). A sorting algorithm was 18

studied by DeGroot and Goel (1980) and was linked to the minimum and maximum correlation coefficients by Whitt 19

(1976) and Demirtas and Hedeker (2011). The algorithm is based on the rearrangement theorem which can be found in 20
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Hardy et al. (1952, Theorem 368). To estimate the minimum correlation coefficient, we sort {Xi} in ascending order and {Yi}1

in descending order and pair the sorted data to a bivariate sequence (X ′

i , Y
′

i ), i = 1, 2, . . . , n. Thus the sample correlation2

coefficient of (X ′

i , Y
′

i ) is an estimate of theminimumcorrelation coefficient. To estimate themaximumcorrelation coefficient,3

we sort both {Xi} and {Yi} in ascending order instead. Demirtas and Hedeker (2011) showed numerically the estimators from4

the sorting algorithm is convergence to the minimum and maximum correlation coefficients. In this paper, we study the5

large sample property for a class of estimators including the estimators derived from the sorting algorithm. A strong law of6

large numbers and asymptotic normality are established.7

The rest of the paper is organized as follows. In Section 2, we establish a strong law of large numbers. In Section 3 we will8

show the asymptotic normality. Some calculations of the minimum and maximum correlation coefficients are illustrated in9

Section 4. Some discussions are included in Section 5.10

2. Strong law of large numbers11

In this paper we assume that X and Y are continuous random variables. Denote by ρmin and ρmax the minimum and12

maximum correlation coefficients of X and Y . Let U be a random variable uniformly distributed on [0,1]. FromWhitt (1976),13

ρmin =
1

σX σY

(
∫ 1

0
F−1(x)G−1(1 − x)dx − E(X)E(Y )) (2.1)14

and15

ρmax =
1

σX σY

(
∫ 1

0
F−1(x)G−1(x)dx − E(X)E(Y )) (2.2)16

where σ 2
X
and σ 2

Y
are the variances of X and Y . Note that both ρmin and ρmax are determined by the marginal distributions17

regardless of the joint distribution of X and Y . The empirical distributions of F and G for given {Xi}, i = 1, . . . ,m, {Yi},18

i = 1, . . . , n, are defined by19

Fm(x) =
1
m

m∑
i=1

I(Xi ≤ x) and Gn(x) =
1
n

n∑
i=1

I(Yi ≤ x) (2.3)20

and the empirical quantile functions are21

F−1
m (t) = inf{x : Fm(x) ≥ t} and G−1

n (t) = inf{x : Gn(x) ≥ t}. (2.4)22

Replacing the unknown quantities by their estimators in (2.1) and (2.2), we obtain the estimators of the minimum and23

maximum correlation coefficients24

ρ̂min =
1

sX sY

(∫ 1

0
F−1
m (x)G−1

n (1 − x)dx − X̄ Ȳ
)

(2.5)25

ρ̂max =
1

sX sY

(∫ 1

0
F−1
m (x)G−1

n (x)dx − X̄ Ȳ
)

. (2.6)26

It can be verified that if m = n, ρ̂min and ρ̂max are equal to the estimators derived from the sorting algorithm described in27

Section 1. For the sake of simplicity, we assume m = n in the theorems below. A brief discussion is provided for the case of28

m ̸= n in Section 5. The strong law of large numbers of ρ̂min and ρ̂max is stated as follows.29

Theorem 1. Let {Xi}, i = 1, . . . , n, be iid with Xi ∼ F (x) and {Yi}, i = 1, . . . , n, be iid with Yi ∼ G(x). Suppose that for some30

α < 1/2 and M > 0,31

|F−1(t)| ≤ M[t(1 − t)]−α, 0 < t < 1, (2.7)32

|G−1(t)| ≤ M[t(1 − t)]−α, 0 < t < 1. (2.8)33

Then, as n → ∞, with probability 1,34

ρ̂max −→ ρmax and ρ̂min −→ ρmin . (2.9)35

Remark 2.1. It can be verified that conditions (2.7) and (2.8) imply E(X2
1 ) < ∞ and E(Y 2

1 ) < ∞. Thus from the classical36

strong law of large numbers, with probability 1, 1
n

∑n
k=1X

2
k −→ E(X2

1 ) and
1
n

∑n
k=1Y

2
k −→ E(Y 2

1 ).37

Proof of Theorem 1. We only provide the proof for ρ̂max −→ ρmax . The second part of the theorem follows in the same38

matter. It is easy to see in (2.6), with probability 1, X̄ −→ E(X1) and Ȳ −→ E(Y1), and from Remark 2.1, both sX and sY are39

strongly consistent estimators of σX and σY . So it remains to show with probability 1,40 ∫ 1

0
F−1
n (t)G−1

n (t)dt −→

∫ 1

0
F−1(t)G−1(t)dt. (2.10)41
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