Accepted Manuscript

Green and eco-friendly route for the synthesis of Ag@Vitamin B9-LDH hybrid and its Chitosan nanocomposites: Characterization and antibacterial activity,

POLYMER

materialstoday

Shadpour Mallakpour, Masoud Hatami

PII: S0032-3861(18)30823-1

DOI: 10.1016/j.polymer.2018.08.077

Reference: JPOL 20884

To appear in: Polymer

Received Date: 08 June 2018

Accepted Date: 29 August 2018

Please cite this article as: Shadpour Mallakpour, Masoud Hatami, Green and eco-friendly route for the synthesis of Ag@Vitamin B9-LDH hybrid and its Chitosan nanocomposites: Characterization and antibacterial activity,, *Polymer* (2018), doi: 10.1016/j.polymer.2018.08.077

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Revised

Green and eco-friendly route for the synthesis of Ag@Vitamin B9-LDH hybrid and its Chitosan nanocomposites: Characterization and antibacterial activity

Shadpour Mallakpour a, b*, Masoud Hatami a

^a Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran

^b Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran

ABSTRACT

Firstly, Ag nanoparticle (Ag-NP) was synthesised with environmentally-friendly and green media extracted from *Rosmarinus officinalis* plants. The structure of Ag-NP was confirmed with the absorption peak related to the Surface Plasmon Resonance at 432 nm through UV-Vis analysis. Subsequence, Ag-NP was composited with pre-synthesised vitamin B9 (VB9) intercalated Layered Double Hydroxide (VB9-LDH) and Ag@VB9-LDH with different percentages was incorporated in the chitosan (CS) as bio-polymeric matrix. The improvement in the physio-chemical properties of prepared nanocomposites (NCs) was confirmed with different spectroscopic techniques. Finally, the effect of polymeric matrix on the antibacterial activity of this compound was examined against two Gram-negative and Gram-positive bacteria. The results of antibacterial test showed the remarkable antibacterial activity for all samples against both bacteria and NC 6 wt% showed greater inhibition zone diameter (19

^{*} Corresponding Authors at: Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran Tel.; +98-31-3391-3267; FAX: +98-31-3391-2350. E-mail address: mallak777@yahoo.com, mallak@cc.iut.ac.ir, mallakpour84@alumni.ufl.edu.

Download English Version:

https://daneshyari.com/en/article/10147537

Download Persian Version:

https://daneshyari.com/article/10147537

Daneshyari.com