

Contents lists available at ScienceDirect

Scripta Materialia

journal homepage: www.elsevier.com/locate/scriptamat

Novel high strength titanium-titanium composites produced using field-assisted sintering technology (FAST)

E.L. Calvert^{a,*,1}, A.J. Knowles^{b,1}, J.J. Pope^a, D. Dye^b, M. Jackson^a

- ^aDepartment of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
- ^bDepartment of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP, UK

ARTICLE INFO

Article history: Received 25 July 2018 Received in revised form 17 August 2018 Accepted 19 August 2018 Available online xxxx

Keywords: Titanium alloys Metal matrix composite Spark plasma sintering Phase transformations Omega

ABSTRACT

To increase the strength of titanium alloys beyond that achievable with α - β microstructures, alternative reinforcing methods are necessary. Here, field-assisted sintering technology (FAST) has been used to produce a novel Ti-5Al-5Mo-5V-3Cr (Ti-5553) metal-matrix-composite (MMC) reinforced with 0-25 wt.% of a \sim 2 GPa yield strength TiFeMo alloy strengthened by ordered body-centred cubic intermetallic and ω phases. The interdiffusion region between Ti-5553 and TiFeMo particles was studied by modelling, electron microscopy, and nanoindentation to examine the effect of graded composition on mechanical properties and formation of α , intermetallic, and ω phases, which resulted in a >200 MPa strengthening benefit over unreinforced Ti-5553.

© 2018 Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

High strength, heavily alloyed titanium alloys such as Ti-5Al-5Mo-5V-3Cr (Ti-5553) can possess yield strengths of $\sim\!1300\,\text{MPa},$ which given the relatively low density of Ti, results in favourable combinations of specific strength ($\sim\!280\,\text{kNm\,kg}^{-1}$) and specific toughness ($\sim\!9\,\text{kNm}^{3/2}\,\text{kg}^{-1}$) [1] compared to even the best steels, such as A300 M (267 kNm kg $^{-1}$ and 9 kNm $^{3/2}\,\text{kg}^{-1}$) [2,3]. This leads to their use for high integrity, weight critical structures such as the landing gear of twin-aisle commercial aircraft, which can account for as much as 10 % of airframe weight; this is a significant consideration in terms of fuel efficiency and therefore the emissions associated with air travel.

These alloys achieve these strengths and toughnesses through the precipitation of a high volume fraction of $10-25\,\mathrm{nm}$ fine scale $hcp~\alpha$ phase within the $bcc~\beta$ matrix [4,5], but the improvement in properties achieved in Ti alloys has begun to plateau in recent years, following much progress that was achieved in the 1950s to 1970s [6]. Long-fibre ceramic reinforcement, e.g. with SiC has long been

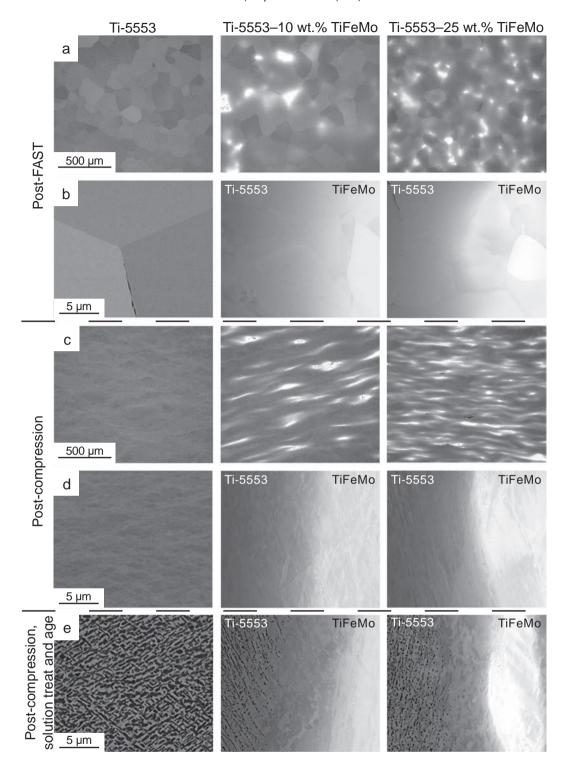
proposed, chiefly using relatively conventional alloys such as Ti-6Al-

4V as the matrix [7], and more recently the use of high strength

Ti-5553 as the matrix has achieved specific strengths as high as

2050 MPa (in tension) and 3500 MPa (in compression) [8]. However,

powder (wt.%).								
	Al	Cr	Fe	Mo	Ni	V	Ti	
Ti-5553	5.1	2.7	0.4	5.1	0.1	5.2	80.8	
TiFoMo	0	0	150	26.6	0	0	47 C	


Table 2 Particle size distribution (PSD) of spherical Ti-5553 powder, and angular TiFeMo powder (for both the Ti-5553–10 wt.% TiFeMo and Ti-5553–25 wt.% TiFeMo composites) (μ m).

	Dx10	Dx50	Dx90
Ti-5553	22	63	115
10 wt.% TiFeMo	16	40	158
25 wt.% TiFeMo	14	35	63

Table 1
Chemical analysis of Ti-5Al-5Mo-5V-3Cr gas atomised powder, and TiFeMo alloy

^{*} Corresponding author. E-mail address: e.l.calvert@sheffield.ac.uk (E. Calvert).

¹ These authors contributed equally to the work.

Fig. 1. Low magnification micrographs of Ti-5553 (30 min dwell) and Ti-5553-TiFeMo composites: (a) post-FAST and (c) post-compression. High magnification micrographs of Ti-5553 (30 min dwell) and Ti-5553-TiFeMo composites: (b) post-FAST; (d) post-compression; and (e) post-compression, solution treat and age.

such microstructures require the laying-up of a composite structure using ceramic fibres, which is a costly manufacturing route.

Recently, progress has been made in the development of so-called 'bcc superalloys', which in the titanium alloy system can be realised using \sim 50 nm ordered β' B2 intermetallics such as TiFe in a bcc β A2

Ti, Mo matrix [9]. Such TiFeMo alloys can possess strengths in the order of 2 GPa, but are brittle.

Powder manufacturing of Ti components has long possessed the possibility to realise substantial cost savings through a reduction in the processing steps and machining requirements of ingot

Download English Version:

https://daneshyari.com/en/article/10147588

Download Persian Version:

https://daneshyari.com/article/10147588

<u>Daneshyari.com</u>