Accepted Manuscript

Ab-initio calculation on electronic and optical properties of ThO2, UO2 and PuO2

Shilpa Singh, Sanjeev K. Gupta, Yogesh Sonvane, K.A. Nekrasov, A. Ya Kupryazhkin, P.N. Gajjar

PII: S0022-3115(18)30798-0

DOI: 10.1016/j.jnucmat.2018.08.055

Reference: NUMA 51178

To appear in: Journal of Nuclear Materials

Received Date: 9 June 2018
Revised Date: 3 August 2018
Accepted Date: 28 August 2018

Please cite this article as: S. Singh, S.K. Gupta, Y. Sonvane, K.A. Nekrasov, A.Y. Kupryazhkin, P.N. Gajjar, Ab-initio calculation on electronic and optical properties of ThO₂, UO₂ and PuO₂, *Journal of Nuclear Materials* (2018), doi: 10.1016/j.jnucmat.2018.08.055.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Ab-initio calculation on electronic and optical properties of

ThO₂, UO₂ and PuO₂

Shilpa Singh^{1,4}, Sanjeev K. Gupta^{1,*}, Yogesh Sonvane², K. A. Nekrasov³.

A. Ya. Kupryazhkin³ and P. N. Gajjar⁴

¹Computational Materials and Nanoscience Group, Department of Physics, St. Xavier's College, Ahmedabad 380009, India

²Advanced Materials Lab, Department of Applied Physics, S.V. National Institute of Technology, Surat 395007, India

> ³Ural Federal University, Yekaterinburg, Russia ⁴Department of Physics, Gujarat University, Ahmedabad 380009, India

Abstract

We have investigated the structural and electronic properties of oxides of Th, U and Pu using GGA+U method. Structure of these oxides is of cubic nature and they have indirect band gaps of 4.34 eV along M \rightarrow R (ThO₂), 2.30 eV along $\Gamma\rightarrow$ R (UO₂) and 2.27 eV along M \rightarrow R (PuO₂). The density of states (DOS) of these oxides shows main contribution of 2p orbital in valence band maxima of ThO₂ and PuO₂ while in UO₂ 5f orbital contributes mainly in VBM. We also investigated the optical properties of these oxides and found that static dielectric function increases from ThO₂ to PuO₂.

*Corresponding author: sanjeev.gupta@sxca.edu.in

Keywords: Electronic band structure, Partial density of states, density functional theory, optical properties

Download English Version:

https://daneshyari.com/en/article/10147635

Download Persian Version:

https://daneshyari.com/article/10147635

<u>Daneshyari.com</u>